精英家教网 > 高中数学 > 题目详情
13.若圆C1:x2+y2=m与圆C2:x2+y2-6x-8y+16=0相外切.
(1)求m的值;
(2)若圆C1与x轴的正半轴交于点A,与y轴的正半轴交于点B,P为第三象限内一点且在圆C1上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

分析 (1)利用圆C1:x2+y2=m与圆C2:x2+y2-6x-8y+16=0相外切,求m的值;
(2)设P(x0,y0),求出四边形ABNM的面积,P点在圆C1上,有x02+y02=4,即可证明结论.

解答 解:(1)圆C1的圆心坐标(0,0),半径为$\sqrt{m}$,
圆C2的圆心坐标(3,4),半径为3,
又两圆外切得$\sqrt{m}$+3=5,∴m=4.
(2)证明:点A坐标为(2,0),点B坐标为(0,2),
设P点坐标为(x0,y0),
由题意得点M的坐标为(0,$\frac{2{y}_{0}}{2-{x}_{0}}$);点N的坐标为($\frac{2{x}_{0}}{2-{y}_{0}}$,0),
四边形ABNM的面积S=$\frac{1}{2}$(2-$\frac{2{x}_{0}}{2-{y}_{0}}$)(2-$\frac{2{y}_{0}}{2-{x}_{0}}$)=$\frac{1}{2}•\frac{(4-2{y}_{0}-2{x}_{0})^{2}}{(2-{y}_{0})(2-{x}_{0})}$,
由P点在圆C1上,有x02+y02=4,
∴四边形ABNM的面积S=4,
即四边形ABNM的面积为定值4.

点评 本题考查圆的标准方程,考查了圆与圆的位置关系,考查计算能力与推理论证能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.椭圆短轴的一个端点是(3,0),焦距为4,该椭圆的方程是$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数为幂函数的是(  )
A.y=x2-1B.y=$\frac{2}{x}$C.y=$\frac{1}{{x}^{2}}$D.y=-x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.建立了直角坐标系xOy的平面α内有两个集合,A={P|P是α内的一个圆上的点},B={Q|Q是α内的某直线上的点},则A∩B中元素的个数最多有(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若一个几何体各个顶点或其外轮廓曲线都在某个球的球面上,那么称这个几何体内接于该球,已知球的体积为$\frac{32π}{3}$,那么下列可以内接于该球的几何体为(  )
A.底面半径为1,且体积为$\frac{4π}{3}$的圆锥B.底面积为1,高为$\sqrt{14}$的正四棱柱
C.棱长为3的正四面体D.棱长为3的正方体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知定义在R上的函数f(x),满足对任意的x,y∈R,都有f(x+y)=f(x)+f(y).当x>0时,f(x)<0.且f(3)=-4.
(Ⅰ)求f(0)的值;
(Ⅱ)判断并证明函数f(x)在R上的奇偶性;
(Ⅲ)在区间[-9,9]上,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(  )
A.f(x)=$\frac{1}{{x}^{2}}$B.f(x)=x2+1C.f(x)=xD.f(x)=2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)为定义在R上的奇函数,当x∈(0,+∞)时,f(x)=2x+1,则当x∈(-∞,0)时,f(x)=-2-x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=alog2x+blog3x+2,且f($\frac{1}{2010}$)=4,则f(2010)的值为0.

查看答案和解析>>

同步练习册答案