分析 利用当$∠AOB=\frac{π}{2}$时,S△AOB面积最大,此时O到AB的距离$d=\sqrt{2}$,即可得出结论.
解答
解:如图:∵${S_{△AOB}}=\frac{1}{2}|{OA}||{OB}|sin∠AOB$=$\frac{1}{2}sin∠AOB≤\frac{1}{2}$,
当$∠AOB=\frac{π}{2}$时,S△AOB面积最大.此时O到AB的距离$d=\sqrt{2}$.
设AB方程为$y=k(x-2\sqrt{2})({k<0})$,即$kx-y-2\sqrt{2}k=0$.
由$d=\frac{{|{2\sqrt{2}k}|}}{{\sqrt{{k^2}+1}}}=\sqrt{2}$得$k=-\frac{{\sqrt{3}}}{3}$.
故答案为:-$\frac{\sqrt{3}}{3}$.
点评 本题考查三角形面积的计算,考查点到直线的距离公式,考查数形结合的数学思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(5,-\frac{4π}{3})$ | B. | $(5,\frac{π}{3})$ | C. | $(5,\frac{2π}{3})$ | D. | $(5,\frac{5π}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com