精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)= 是(﹣∞,+∞)上的减函数,那么a的取值范围是

【答案】 ≤a<
【解析】解:∵当x≥1时,y=logax单调递减,
∴0<a<1;
而当x<1时,f(x)=(3a﹣1)x+4a单调递减,
∴a<
又函数在其定义域内单调递减,
故当x=1时,(3a﹣1)x+4a≥logax,得a≥
综上可知, ≤a<
所以答案是: ≤a<
【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集,以及对对数函数的单调性与特殊点的理解,了解过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知左、右焦点分别为的椭圆与直线相交于两点,使得四边形为面积等于的矩形.

1求椭圆的方程;

2过椭圆上一动点(不在轴上)作圆的两条切线,切点分别为,直线与椭圆交于两点, 为坐标原点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cosx=﹣ ,x∈(0,π)
(1)求cos(x﹣ )的值;
(2)求sin(2x+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的各项都是正数,且对任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn为数列{an}的前n项和.
(1)求证数列{an}是等差数列;
(2)若数列{ }的前n项和为Tn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|logax|(0<a<1)的定义域为[m,n](m<n),值域为[0,1],若n﹣m的最小值为 , 则实数a的值为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量
(Ⅰ)若 方向上的投影为 ,求λ的值;
(Ⅱ)命题P:向量 的夹角为锐角;
命题q: ,其中向量 =( )(λ,α∈R).若“p或q”为真命题,“p且q”为假命题,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4一5:不等式选讲.

已知函数.

(1)求的解集;

(2)设函数,若对任意的都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为.

(1)设为参数,若,求直线的参数方程;

(2)已知直线与曲线交于,设,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)将一颗骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,以分别得到的点数(m,n)作为点P的坐标(m,n),求:点P落在区域 内的概率;
(2)在区间[1,6]上任取两个实数(m,n),求:使方程x2+mx+n2=0有实数根的概率.

查看答案和解析>>

同步练习册答案