精英家教网 > 高中数学 > 题目详情

【题目】已知向量
(Ⅰ)若 方向上的投影为 ,求λ的值;
(Ⅱ)命题P:向量 的夹角为锐角;
命题q: ,其中向量 =( )(λ,α∈R).若“p或q”为真命题,“p且q”为假命题,求λ的取值范围.

【答案】解:(Ⅰ)由已知, 方向上的投影 = ,即 =
所以1﹣2λ=5,∴λ=﹣2.
(Ⅱ)1°,若p为真,则 >0,且 ,即1﹣2λ>0,且λ≠﹣2.
2°若p为真,由 得λ2﹣cos2α=λ+2sinα,
∴λ2﹣λ=cos2α+2sinα=1﹣sin2α+2sinα=﹣(sinα﹣1)2+2.
∵﹣1≤sinα≤1,∴﹣2≤λ2﹣λ≤2,∴﹣1≤λ≤2.
若p真q假,则 ∴λ<﹣1且λ≠﹣2.
若p假q真,则 ≤λ≤2
综上得λ∈(﹣∞,﹣2)∪(﹣2,﹣1)∪[ ,2]
【解析】(Ⅰ) 方向上的投影的表达式是 ,由此得出关于λ的方程,解出即可.(Ⅱ)若“p或q”为真命题,“p且q”为假命题,则pq中一真一假,分类求解,再合并即可.
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真,以及对数量积表示两个向量的夹角的理解,了解设都是非零向量,的夹角,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD=CD=2AB=2,PA⊥AD,AB∥CD,CD⊥AD,E为PC的中点,且DE=EC.

(1)求证:PA⊥面ABCD;
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈( ),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线l1:2x﹣y+a=0,l2:2x﹣y+a2+1=0和圆:x2+y2+2x﹣4=0相切,则a的取值范围是(
A.a>7或a<﹣3
B.
C.﹣3≤a≤一 ≤a≤7
D.a≥7或a≤﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设P是椭圆 上一点,M、N分别是两圆:(x+4)2+y2=1和(x﹣4)2+y2=1上的点,则|PM|+|PN|的最小值、最大值的分别为( )
A.9,12
B.8,11
C.8,12
D.10,12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= 是(﹣∞,+∞)上的减函数,那么a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(3,﹣1), =(2,1) 求:
(1)| |.
(2)求x的值使x +3 与3 ﹣2 为平行向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数满足,则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的最小正周期和函数的单调递增区间;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若 ,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“糖尿病”已经成为日渐多发的一种疾病,其具有危害性大且难以完全治愈的特征.为了更好的抑制“糖尿病”多发的势头,某社区卫生医疗机构针对所服务居民开展了免费测血糖活动,将随机抽取的10名居民均分为 两组(组:4.3,5.1,4.6,4.1,4.9; 组:5.1,4.9,4.0,4.0,4.5).

(1)通过提供的数据请判断哪一组居民的血糖值更低;

(2)现从组的5名居民中随机选取2名,求这2名中至少有1名的血糖值低于4.5的概率.

查看答案和解析>>

同步练习册答案