精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(3,﹣1), =(2,1) 求:
(1)| |.
(2)求x的值使x +3 与3 ﹣2 为平行向量.

【答案】
(1)解:根据题意,向量 =(3,﹣1), =(2,1)

+ =(5,0),

| + |= =5,


(2)解:向量 =(3,﹣1), =(2,1)

则x +3 =(3x+6,3﹣x),3 ﹣2 =(5,﹣5),

若x +3 与3 ﹣2 为平行向量,

则有(3x+6)×(﹣5)=(3﹣x)×5,

解可得x=﹣

即当x=﹣ 时,向量x +3 与3 ﹣2 为平行向量.


【解析】(1)根据题意,由 的坐标可得向量 + 的坐标,由向量模的公式计算可得答案;(2)由 的坐标可得向量x +3 与3 ﹣2 的坐标,再结合向量平行的坐标表示公式可得(3x+6)×(﹣5)=(3﹣x)×5,解可得x的值,即可得答案.
【考点精析】认真审题,首先需要了解平面向量的坐标运算(坐标运算:设;;设,则).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,椭圆 )的离心率是,抛物线 的焦点的一个顶点.

1)求椭圆的方程;

2)设上动点,且位于第一象限, 在点处的切线交于不同的两点 ,线段的中点为,直线与过且垂直于轴的直线交于点

i)求证:点在定直线上;

ii)直线轴交于点,记的面积为 的面积为,求的最大值及取得最大值时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为一简单组合体,其底面 ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)求证:BE∥平面PDA;
(2)求四棱锥B﹣CEPD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若m=1,求函数f(x)的定义域.
(2)若函数f(x)的值域为R,求实数m的取值范围.
(3)若函数f(x)在区间 上是增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量
(Ⅰ)若 方向上的投影为 ,求λ的值;
(Ⅱ)命题P:向量 的夹角为锐角;
命题q: ,其中向量 =( )(λ,α∈R).若“p或q”为真命题,“p且q”为假命题,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1的圆心在坐标原点O,且恰好与直线l1:x﹣2y+3 =0相切,点A为圆上一动点,AM⊥x轴于点M,且动点N满足 ,设动点N的轨迹为曲线C.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C相交于不同两点A,B,且满足 (O为坐标原点),求线段AB长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交警随机抽取了途径某服务站的40辆小型轿车在经过某区间路段的车速(单位: ),现将其分成六组为后得到如图所示的频率分布直方图.

(1)某小型轿车途经该路段,其速度在以上的概率是多少?

(2)若对车速在两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,解不等式

(2)若存在实数,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,设命题p:椭圆C: + =1的焦点在x轴上;命题q:直线l:x﹣y+m=0与圆O:x2+y2=9有公共点. 若命题p、命题q中有且只有一个为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案