精英家教网 > 高中数学 > 题目详情
17.$\int_{-1}^1$(xcosx+$\sqrt{4-{x^2}}$)dx=$\frac{2π}{3}$+$\sqrt{3}$.

分析 先根据奇函数的性质得到$\int_{-1}^1$xcosxdx=0,再根据定积分的几何意义可得$\int_{-1}^1$$\sqrt{4-{x^2}}$dx表示如图所示的阴影部分的面积,问题得以解决.

解答 解:∵y=xcosx为奇函数,
∴$\int_{-1}^1$xcosxdx=0,
∵$\int_{-1}^1$$\sqrt{4-{x^2}}$dx表示如图所示的阴影部分的面积,
∴OB=1,OC=2,
∴∠BCO=30°,
∴∠AOC=30°,
∴S扇形AOC+S△OBC=$\frac{30π×{2}^{2}}{360}$+$\frac{1}{2}$×1×$\sqrt{3}$=$\frac{π}{3}$+$\frac{\sqrt{3}}{2}$,
∴S阴影=2(S扇形AOC+S△OBC)=$\frac{2π}{3}$+$\sqrt{3}$,
∴$\int_{-1}^1$(xcosx+$\sqrt{4-{x^2}}$)dx=$\frac{2π}{3}$+$\sqrt{3}$,
故答案为:$\frac{2π}{3}$+$\sqrt{3}$

点评 本题考查了奇函数的性质和定积分的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设f(x)=x+$\frac{a}{x+1}$,x∈[0,+∞).
(1)当a=4时,求f(x)的最小值;
(2)当a∈(0,1)时,判断f(x)的单调性,并求出f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=x2-2ax-3在区间[0,1]上具有单调性,则a的取值范围是(-∞,0]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知条件p:|5x-1|>a(a>0),条件q:$\frac{1}{2{x}^{2}-3x+1}$>0.命题“若p则q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ为参数),且曲线C1上的点M(2,$\sqrt{3}$)对应的参数φ=$\frac{π}{3}$.以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆.射线$θ=\frac{π}{4}$与曲线C2交于点D($\sqrt{2}$,$\frac{π}{4}$).
(1)求曲线C1的普通方程,曲线C2的极坐标方程;
(2)若A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲线C1上的两点,求$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B={0,1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合M满足M⊆{0,1,2,3},则符合题意的集合M的子集最多有(  )
A.16个B.15个C.8个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足不等式组$\left\{\begin{array}{l}{2x-3y+6≥0}\\{2x+y-2≤0}\\{y+1≥0}\end{array}\right.$,则z=|x|+y的取值范围为[-1,$\frac{7}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.三角形的面积s=$\frac{1}{2}$(a+b+c)r,a,b,c为其边长,r为内切圆的半径,利用类比法可以得出四面体的体积为(  )
A.V=$\frac{1}{3}$abc(a,b,c为地面边长)
B.V=$\frac{1}{3}$sh(s为地面面积,h为四面体的高)
C.V=$\frac{1}{3}$(ab+bc+ac)h,(a,b,c为地面边长,h为四面体的高)
D.V=$\frac{1}{3}$(S1+S2+S3+S4)r,(S1,S2,S3,S4分别为四个面的面积,r为内切球的半径)

查看答案和解析>>

同步练习册答案