分析 先根据奇函数的性质得到$\int_{-1}^1$xcosxdx=0,再根据定积分的几何意义可得$\int_{-1}^1$$\sqrt{4-{x^2}}$dx表示如图所示的阴影部分的面积,问题得以解决.
解答
解:∵y=xcosx为奇函数,
∴$\int_{-1}^1$xcosxdx=0,
∵$\int_{-1}^1$$\sqrt{4-{x^2}}$dx表示如图所示的阴影部分的面积,
∴OB=1,OC=2,
∴∠BCO=30°,
∴∠AOC=30°,
∴S扇形AOC+S△OBC=$\frac{30π×{2}^{2}}{360}$+$\frac{1}{2}$×1×$\sqrt{3}$=$\frac{π}{3}$+$\frac{\sqrt{3}}{2}$,
∴S阴影=2(S扇形AOC+S△OBC)=$\frac{2π}{3}$+$\sqrt{3}$,
∴$\int_{-1}^1$(xcosx+$\sqrt{4-{x^2}}$)dx=$\frac{2π}{3}$+$\sqrt{3}$,
故答案为:$\frac{2π}{3}$+$\sqrt{3}$
点评 本题考查了奇函数的性质和定积分的几何意义,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | V=$\frac{1}{3}$abc(a,b,c为地面边长) | |
| B. | V=$\frac{1}{3}$sh(s为地面面积,h为四面体的高) | |
| C. | V=$\frac{1}{3}$(ab+bc+ac)h,(a,b,c为地面边长,h为四面体的高) | |
| D. | V=$\frac{1}{3}$(S1+S2+S3+S4)r,(S1,S2,S3,S4分别为四个面的面积,r为内切球的半径) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com