12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=acos¦Õ}\\{y=bsin¦Õ}\end{array}\right.$£¨a£¾b£¾0£¬¦ÕΪ²ÎÊý£©£¬ÇÒÇúÏßC1ÉϵĵãM£¨2£¬$\sqrt{3}$£©¶ÔÓ¦µÄ²ÎÊý¦Õ=$\frac{¦Ð}{3}$£®ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2ÊÇÔ²ÐÄÔÚ¼«ÖáÉÏÇÒ¾­¹ý¼«µãµÄÔ²£®ÉäÏß$¦È=\frac{¦Ð}{4}$ÓëÇúÏßC2½»ÓÚµãD£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£®
£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³Ì£¬ÇúÏßC2µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôA£¨¦Ñ1£¬¦È£©£¬B£¨¦Ñ2£¬¦È+$\frac{¦Ð}{2}$£©ÊÇÇúÏßC1ÉϵÄÁ½µã£¬Çó$\frac{1}{{{¦Ñ}_{1}}^{2}}$+$\frac{1}{{{¦Ñ}_{2}}^{2}}$µÄÖµ£®

·ÖÎö £¨1£©µãM£¨2£¬$\sqrt{3}$£©¶ÔÓ¦µÄ²ÎÊý¦Õ=$\frac{¦Ð}{3}$´úÈë$\left\{\begin{array}{l}{x=acos¦Õ}\\{y=bsin¦Õ}\end{array}\right.$£¨a£¾b£¾0£¬¦ÕΪ²ÎÊý£©£¬¿ÉµÃ$\left\{\begin{array}{l}{2=acos\frac{¦Ð}{3}}\\{\sqrt{3}=bsin\frac{¦Ð}{3}}\end{array}\right.$£¬½âµÃa£¬b£®¿ÉµÃÇúÏßC1µÄÆÕͨ·½³Ì£®ÉèÔ²C2µÄ°ë¾¶ÎªR£¬ÔòÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2Rcos¦È£¬½«µãD$£¨\sqrt{2}£¬\frac{¦Ð}{4}£©$´úÈëµÃR£®
£¨2£©ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ$\frac{1}{{¦Ñ}^{2}}$=$\frac{co{s}^{2}¦È}{16}$+$\frac{si{n}^{2}¦È}{4}$£¬½«A£¨¦Ñ1£¬¦È£©£¬B£¨¦Ñ2£¬¦È+$\frac{¦Ð}{2}$£©´úÈë¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©µãM£¨2£¬$\sqrt{3}$£©¶ÔÓ¦µÄ²ÎÊý¦Õ=$\frac{¦Ð}{3}$´úÈë$\left\{\begin{array}{l}{x=acos¦Õ}\\{y=bsin¦Õ}\end{array}\right.$£¨a£¾b£¾0£¬¦ÕΪ²ÎÊý£©£¬¿ÉµÃ$\left\{\begin{array}{l}{2=acos\frac{¦Ð}{3}}\\{\sqrt{3}=bsin\frac{¦Ð}{3}}\end{array}\right.$£¬
½âµÃ£ºa=4£¬b=2£®
¡àÇúÏßC1µÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1£®
ÉèÔ²C2µÄ°ë¾¶ÎªR£¬ÔòÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2Rcos¦È£¬½«µãD$£¨\sqrt{2}£¬\frac{¦Ð}{4}£©$´úÈëµÃR=1£®£®
¡àÔ²C2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£®
£¨2£©ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ$\frac{1}{{¦Ñ}^{2}}$=$\frac{co{s}^{2}¦È}{16}$+$\frac{si{n}^{2}¦È}{4}$£¬
½«A£¨¦Ñ1£¬¦È£©£¬B£¨¦Ñ2£¬¦È+$\frac{¦Ð}{2}$£©´úÈë¿ÉµÃ£º$\frac{1}{{{¦Ñ}_{1}}^{2}}$=$\frac{co{s}^{2}¦È}{16}$+$\frac{si{n}^{2}¦È}{4}$£¬$\frac{1}{{{¦Ñ}_{2}}^{2}}$=$\frac{si{n}^{2}¦È}{16}$+$\frac{co{s}^{2}¦È}{4}$£®
¡à$\frac{1}{{{¦Ñ}_{1}}^{2}}$+$\frac{1}{{{¦Ñ}_{2}}^{2}}$=$\frac{1}{16}$+$\frac{1}{4}$=$\frac{5}{16}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¹«Ê½¡¢ÍÖÔ²µÄ²ÎÊý·½³Ì¼°ÆäÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èçͼ£¬ÈôN=5£¬ÔòÊä³öµÄSÖµµÈÓÚ$\frac{5}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®½¹µãÔÚxÖáÉϵÄÍÖÔ²$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4}$=1µÄ½¹¾àÊÇ2£¬ÔòmµÄÖµÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÃüÌâp£ºÈô´æÔÚÕýÊýx¡Ê£¨2£¬+¡Þ£©Ê¹2x£¨x-a£©£¼1³ÉÁ¢£¬ÃüÌâq£ºº¯Êýy=lg£¨x2+2ax+a£©ÖµÓòΪR£¬Èç¹ûp¡ÄqÊǼÙÃüÌ⣬p¡ÅqÕæÃüÌ⣬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®º¯Êýf£¨x£©=$\frac{{x}^{3}+sinx}{1+{x}^{2}}$+3µÄ×î´óÖµ¡¢×îСֵ·Ö±ðΪM¡¢n£¬ÔòM+n=£¨¡¡¡¡£©
A£®0B£®3C£®6D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®$\int_{-1}^1$£¨xcosx+$\sqrt{4-{x^2}}$£©dx=$\frac{2¦Ð}{3}$+$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÈôÈ«³ÆÃüÌ⣺¡°?x¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓРa x£¾1¡±ÊÇÕæÃüÌ⣬ÔòʵÊý a µÄȡֵ·¶Î§ÊÇa£¾1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªf£¨x£©=$\frac{1}{3}$x3-$\frac{3}{2}$ax2+2ax-$\frac{2}{3}$µÄÁ½¸ö¼«ÖµµãΪx1£¬x2£¨x1¡Ùx2£©£¬ÇÒx2=2x1£¬Ôòf£¨x£©µÄÁãµã¸öÊýΪ£¨¡¡¡¡£©
A£®2B£®3C£®1»ò2D£®1»ò3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢c£¬ÒÑÖªa=3£¬b=$\sqrt{6}$£¬A=$\frac{¦Ð}{3}$£¬Ôò½ÇBµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{4}$B£®$\frac{3¦Ð}{4}$C£®$\frac{¦Ð}{4}$»ò$\frac{3¦Ð}{4}$D£®ÒÔÉ϶¼²»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸