精英家教网 > 高中数学 > 题目详情
2.已知圆C1:(x-4)2+(y-2)2=4和圆C2:(x-1)2+(y-3)2=9.
(1)试判断两圆的位置关系;若相交,求出公共弦所在的直线方程;
(2)若直线l过点(1,0)且与圆C1相切,求直线l的方程.

分析 (1)将两圆化成标准方程,可得它们的圆心坐标和半径,计算出圆心距并比较其与|r1-r2|、r1+r2的大小关系,可得两圆的位置关系是相交;将两圆的一般式方程相减,消去平方项可得关于x、y的二次一次方程,即为两圆公共弦所在直线方程;
(2)求出圆心到直线的距离等于半径,可求解直线l的方程.

解答 解:(1)圆C1:(x-4)2+(y-2)2=4
∴圆心C1(4,2),半径r1=2,圆C2:(x-1)2+(y-3)2=9的圆心C2(1,3),半径r2=3
∵|r1-r2|=1,r1+r2=5,圆心距C1C2=$\sqrt{({4-1)}^{2}+(2-3)^{2}}$=$\sqrt{10}$
∴|r1-r2|≤C1C2≤r1+r2,得两圆的位置关系是相交;
圆C1:(x-4)2+(y-2)2=4和圆C2:(x-1)2+(y-3)2=9.
∴圆C1和圆C2的方程两边对应相减,化简得6x-2y-15=0,
即为两圆公共弦所在直线方程.
(2)设切线方程为y=k(x-1),即kx-y-k=0,
∵圆心(4,2)到切线l的距离等于半径2,
∴$\frac{|4k-2-k|}{\sqrt{1+{k}^{2}}}$=2,解得k=$\frac{12}{5}$或k=0,
∴切线方程为y=$\frac{12}{5}$(x-1),即12x-5y-12=0,或y=0
所以,所求的直线l的方程是12x-5y-12=0,或y=0.

点评 本题给出两圆的一般式方程,求两圆的位置关系并求它们的公切线方程,着重考查了圆的标准方程和一般方程、直线与圆的位置关系等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|x≤4},B={x|x<a}.
(1)若集合A∩B=A,求实数a的取值范围;
(2)若集合A?B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow{a}$=(2sin$\frac{x}{2}$,$\sqrt{3}$+1),$\overrightarrow{b}$=(cos$\frac{x}{2}$-$\sqrt{3}$sin$\frac{x}{2}$,1),f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$+m.
(1)求f(x)在[0,2π]上的单调区间;
(2)当x∈[0,$\frac{π}{2}$]时,f(x)的最小值为2,求f(x)≥2成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算${∫}_{\frac{π}{4}}^{\frac{π}{2}}$cos(2x-$\frac{π}{2}$)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=7sin($\frac{2}{3}$x+$\frac{3π}{2}$)是(  )
A.周期为3π的偶函数B.周期为2π的奇函数
C.周期为3π的奇函数D.周期为$\frac{4π}{3}$的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=cos($\frac{π}{2}$-x)cosx+sin2(π-x)-$\frac{1}{2}$
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,a=2,且f($\frac{A}{2}$)=-$\frac{1}{10}$,则当△ABC的周长取最大值时,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.椭圆(m+1)x2+my2=1的长轴长是(  )
A.$\frac{2\sqrt{m-1}}{m-1}$B.$\frac{-2\sqrt{-m}}{m}$C.$\frac{2\sqrt{m}}{m}$D.-$\frac{2\sqrt{1-m}}{m-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知|${\overrightarrow a}$|=1,|${\overrightarrow b}$|=$\sqrt{2}$.
(1)若$\overrightarrow a$∥$\overrightarrow b$,求$\overrightarrow a$•$\overrightarrow b$;
(2)若$\overrightarrow a$,$\overrightarrow b$的夹角为135°,求|${\overrightarrow a+\overrightarrow b}$|;
(3)若$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow a$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知双曲线C1和椭圆C2有相同的焦点F1(-c,0),F2(c,0)(c>0),两曲线在第一象限内的交点为P,椭圆C2与y轴负方向交点为B,且P,F2,B三点共线,F2分$\overrightarrow{PB}$所成的比为1:2,又直线PB与双曲线C1的另一个交点为Q,若|F2Q|=$\frac{\sqrt{3}}{5}$,求双曲线C1和椭圆C2的方程.

查看答案和解析>>

同步练习册答案