精英家教网 > 高中数学 > 题目详情
12.已知双曲线C1和椭圆C2有相同的焦点F1(-c,0),F2(c,0)(c>0),两曲线在第一象限内的交点为P,椭圆C2与y轴负方向交点为B,且P,F2,B三点共线,F2分$\overrightarrow{PB}$所成的比为1:2,又直线PB与双曲线C1的另一个交点为Q,若|F2Q|=$\frac{\sqrt{3}}{5}$,求双曲线C1和椭圆C2的方程.

分析 设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),双曲线的方程为$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0),由题意可得a2-b2=c2=m2+n2,设P(u,v),B(0,-b),运用线段的定比分点坐标公式可得P的坐标,代入椭圆方程,可得c=$\frac{\sqrt{3}}{3}$a,b=$\frac{\sqrt{6}}{3}$a,求得直线PB的方程,化简可得双曲线4x2-12y2=a2,将直线方程代入双曲线的方程,解得交点Q,再由两点的距离公式,可得a,进而得到b,m,n,即可得到所求双曲线和椭圆的方程.

解答 解:设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
双曲线的方程为$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0),
由题意可得a2-b2=c2=m2+n2
设P(u,v),B(0,-b),
F2分$\overrightarrow{PB}$所成的比为1:2,即为$\overrightarrow{P{F}_{2}}$=$\frac{1}{2}$$\overrightarrow{{F}_{2}B}$,
即有c=$\frac{u+\frac{1}{2}•0}{1+\frac{1}{2}}$,0=$\frac{v+\frac{1}{2}•(-b)}{1+\frac{1}{2}}$,
解得u=$\frac{3}{2}$c,v=$\frac{1}{2}$b,
代入椭圆方程可得$\frac{9{c}^{2}}{4{a}^{2}}$+$\frac{1}{4}$=1,
即有c=$\frac{\sqrt{3}}{3}$a,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\frac{\sqrt{6}}{3}$a,
则P($\frac{\sqrt{3}}{2}$a,$\frac{\sqrt{6}}{6}$a),B(0,-$\frac{\sqrt{6}}{3}$a),
直线PB的方程为y=$\sqrt{2}$x-$\frac{\sqrt{6}}{3}$a,
由c2=m2+n2=$\frac{1}{3}$a2
且$\frac{3}{4}$•$\frac{{a}^{2}}{{m}^{2}}$-$\frac{{a}^{2}}{6{n}^{2}}$=1,
解得m2=$\frac{1}{4}$a2,n2=$\frac{1}{12}$a2
则双曲线的方程即为4x2-12y2=a2
代入y=$\sqrt{2}$x-$\frac{\sqrt{6}}{3}$a,可得
20x2-16$\sqrt{3}$ax+9a2=0,
解得x=$\frac{3\sqrt{3}}{10}$a或$\frac{\sqrt{3}}{2}$a,
即有Q($\frac{3\sqrt{3}}{10}$a,-$\frac{\sqrt{6}}{30}$a),
由|F2Q|=$\frac{\sqrt{3}}{5}$,可得$\sqrt{(\frac{3\sqrt{3}}{10}a-\frac{\sqrt{3}}{3}a)^{2}+(-\frac{\sqrt{6}}{30}a)^{2}}$=$\frac{\sqrt{3}}{5}$,
解得a=2$\sqrt{3}$,即有b=2$\sqrt{2}$,c=2,m=$\sqrt{3}$,n=1,
则双曲线C1的方程为$\frac{{x}^{2}}{3}$-y2=1,椭圆C2的方程为$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1.

点评 本题考查椭圆、双曲线的方程的求法,注意运用待定系数法,线段的定比分点坐标公式,以及直线方程和双曲线方程联立,求交点,考查化简整理的运算能力,以及化归思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知圆C1:(x-4)2+(y-2)2=4和圆C2:(x-1)2+(y-3)2=9.
(1)试判断两圆的位置关系;若相交,求出公共弦所在的直线方程;
(2)若直线l过点(1,0)且与圆C1相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知圆C的圆心坐标为(1,2),半径r=3,则圆C的标准方程为(x-1)2+(y-2)2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设椭圆$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{25}$=1的两焦点分别为F1,F2,过F1的直线交椭圆于A.B两点,则△ABF2的周长为20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x||x-a|≤1},B={x|(x+2)(x-3)>0},且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用拉格朗日中值定理证明不等式:$\frac{x}{1+x}$<ln(1+x)<x(x>0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.△ABC中,若对任意t∈R均有|$\overrightarrow{AB}$-t$\overrightarrow{AC}$|≥$\frac{1}{2}$|$\overrightarrow{AB}$|成立,则(  )
A.$\frac{π}{6}$≤A≤$\frac{5π}{6}$B.$\frac{π}{6}$≤A$≤\frac{π}{2}$C.$\frac{π}{6}$≤B$≤\frac{5π}{6}$D.$\frac{π}{6}$≤B$<\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x,0},B={1,2},且A∩B={x},则A∪B等于(  )
A.{x,0,1,2}B.{x,0,1}C.{x,0,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=$\frac{{x}^{2}+a}{x+1}$,x∈(0,+∞)在x=1处取得极值,则f(x)的极小值为-6.

查看答案和解析>>

同步练习册答案