精英家教网 > 高中数学 > 题目详情
11.已知f(x)=$\frac{{x}^{2}+a}{x+1}$,x∈(0,+∞)在x=1处取得极值,则f(x)的极小值为-6.

分析 求出函数的导数,根据f′(1)=0,求出a的值,从而求出f(x)的最小值即可.

解答 解:f′(x)=$\frac{{x}^{2}+2x-a}{{(x+1)}^{2}}$,
∵f(x)=$\frac{{x}^{2}+a}{x+1}$,x∈(0,+∞)在x=1处取得极值,
∴f′(1)=0,解得:a=3,
∴f′(x)=$\frac{{x}^{2}+2x-3}{{(x+1)}^{2}}$=$\frac{(x+3)(x-1)}{{(x+1)}^{2}}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
∴f(x)在(0,1)递减,在(1,+∞)递增,
f(x)极小值=f(1)=-6,
故答案为:-6.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知双曲线C1和椭圆C2有相同的焦点F1(-c,0),F2(c,0)(c>0),两曲线在第一象限内的交点为P,椭圆C2与y轴负方向交点为B,且P,F2,B三点共线,F2分$\overrightarrow{PB}$所成的比为1:2,又直线PB与双曲线C1的另一个交点为Q,若|F2Q|=$\frac{\sqrt{3}}{5}$,求双曲线C1和椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,若sinA+sinB=sinC(cosA+cosB).
(1)求角C;
(2)若角C的对边c=2,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}的前n项和Sn=$\frac{{n}^{2}}{an+b}$,若a1=$\frac{1}{2}$,a2=$\frac{5}{6}$.
(1)求数列{an}的前n项和Sn,数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{n}^{2}+n-1}$,数列{bn}的前n项和Tn.求满足Tn>$\frac{2006}{2016}$的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.当函数f(x)=$\frac{{e}^{x}}{x}$取到极值时,实数x的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=x3+ax2+(a+6)x+1没有极值,则实数a的取值范围是[-3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=axn(1-x)(x>0,n∈N*),当n=-2时,f(x)的极大值为$\frac{4}{27}$.
(1)求a的值;
(2)若方程f(x)-m=0有两个正实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,sinA:sinB:sinC=2:$\sqrt{6}$:($\sqrt{3}$+1),则三角形的最大角与最小角的和等于$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(x)=$\left\{\begin{array}{l}f(x-4),x>0\\{e^x}+\int_1^2{\frac{1}{t}dt,x≤0}\end{array}$,则f(2016)等于1+ln2.

查看答案和解析>>

同步练习册答案