精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x3+ax2+(a+6)x+1没有极值,则实数a的取值范围是[-3,6].

分析 由已知得f′(x)=3x2+2ax+a+6=0没有实数根或有1个实数根,由此能求出实数a的取值范围.

解答 解:∵f(x)=x3+ax2+(a+6)x+1,
∴f′(x)=3x2+2ax+a+6,
∵函数f(x)=x3+ax2+3x+1没有极值,
∴f′(x)=3x2+2ax+a+6=0没有实数根或有1个实数根,
∴△=4a2-12(a+6)≤0,解得-3≤a≤6,
故答案为:[-3,6].

点评 本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.用拉格朗日中值定理证明不等式:$\frac{x}{1+x}$<ln(1+x)<x(x>0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知平行四边形ABCD中,A(4,1,3)、B(2,-5,1)、C(3,7,-5),则顶点D的坐标为(5,13,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=-4x3+x2+4x-1,g(x)=ax-a,a∈R.
(1)求函数f(x)的极大值、极小值;
(2)若在(-∞,1)内存在唯一的整数m,使得f(m)<g(m)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=$\frac{{x}^{2}+a}{x+1}$,x∈(0,+∞)在x=1处取得极值,则f(x)的极小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+ln(x-a)a∈R.
(Ⅰ)若f(x)有两个不同的极值点,求a的取值范围;
(Ⅱ)当a≤-2时,用g(a)表示f(x)在[-1,0]上的最大值,求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线C:y2=4x的焦点为F,准线为l,P为抛物线C上一点,且P在第一象限,PM⊥l于点M,线段MF与抛物线C交于点N,若PF的斜率为$\frac{3}{4}$,则$\frac{|MN|}{|NF|}$=(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设m,n分别是先后抛掷两枚骰子所得的点数,则m,n中有4的概率为(  )
A.$\frac{11}{36}$B.$\frac{5}{18}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知:向量$\overrightarrow a$=(1,-3),$\overrightarrow b$=(-2,m),且$\overrightarrow a$⊥($\overrightarrow a$-$\overrightarrow b$).
(1)求实数m的值;
(2)当k$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$-$\overrightarrow b$平行时,求实数k的值.

查看答案和解析>>

同步练习册答案