精英家教网 > 高中数学 > 题目详情
3.函数f(x)=axn(1-x)(x>0,n∈N*),当n=-2时,f(x)的极大值为$\frac{4}{27}$.
(1)求a的值;
(2)若方程f(x)-m=0有两个正实根,求m的取值范围.

分析 (1)求出函数的对数,根据n=2时,f(x)的极大值为$\frac{4}{27}$,得到f($\frac{2}{3}$)=a•$\frac{4}{9}$×$\frac{1}{3}$=$\frac{4}{27}$,解出即可;
(2)求出f(x)的导数,得到函数的单调区间,求出f(x)的值域,从而求出m的范围.

解答 解:(1)n=2时,f(x)=ax2(1-x),
∴f′(x)=ax(2-3x),
令f′(x)=0得:x=0或x=$\frac{2}{3}$,
∵n=2时,f(x)的极大值为$\frac{4}{27}$,
故a>0,且f($\frac{2}{3}$)=a•$\frac{4}{9}$×$\frac{1}{3}$=$\frac{4}{27}$,解得:a=1;
(2)∵f(x)=xn(1-x),
∴f′(x)=nxn-1-(n+1)xn=(n+1)xn-1($\frac{n}{n+1}$-x),
显然,f(x)在x=$\frac{n}{n+1}$处取得最大值,
f($\frac{n}{n+1}$)=$\frac{{n}^{n}}{{(n+1)}^{n+1}}$,
∴f(x)的值域是(0,$\frac{{n}^{n}}{{(n+1)}^{n+1}}$),
若方程f(x)-m=0有两个正实根,
只需0<m<$\frac{{n}^{n}}{{(n+1)}^{n+1}}$即可.

点评 本题考查了函数的单调性、极值、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.△ABC中,若对任意t∈R均有|$\overrightarrow{AB}$-t$\overrightarrow{AC}$|≥$\frac{1}{2}$|$\overrightarrow{AB}$|成立,则(  )
A.$\frac{π}{6}$≤A≤$\frac{5π}{6}$B.$\frac{π}{6}$≤A$≤\frac{π}{2}$C.$\frac{π}{6}$≤B$≤\frac{5π}{6}$D.$\frac{π}{6}$≤B$<\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{1}{x}+klnx,k≠0$.
(Ⅰ)当k=1时,求函数f(x)单调区间和极值;
(Ⅱ)若关于x的方程f(x)=k有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=$\frac{{x}^{2}+a}{x+1}$,x∈(0,+∞)在x=1处取得极值,则f(x)的极小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=-\frac{2}{3}a{x^3}+{x^2}(a>0)$,x∈R.
(1)当a=1时,求f(x)在点(3,f(3))处的切线方程.
(2)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线C:y2=4x的焦点为F,准线为l,P为抛物线C上一点,且P在第一象限,PM⊥l于点M,线段MF与抛物线C交于点N,若PF的斜率为$\frac{3}{4}$,则$\frac{|MN|}{|NF|}$=(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=x2-4ex-ax在R上存在单调递增区间,则实数a的取值范围为(-∞,-2ln2-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线l过抛物线y2=2px(p>0)的焦点F,与该抛物线及其准线的交点依次为A、B、C,若|BC|=2|BF|,|AF|=3,则P=(  )
A.$\frac{3}{4}$B.$\frac{3}{2}$C.$\frac{9}{4}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点P(t,4)在抛物线y2=4x上,抛物线的焦点为F,那么|PF|=5.

查看答案和解析>>

同步练习册答案