精英家教网 > 高中数学 > 题目详情
19.已知集合A={1,2,3},B={y|y=3x-2,x∈A},则A∩B={1}.

分析 把A中元素代入y=3x-2中计算求出y的值,确定出B,找出A与B的交集即可.

解答 解:把x=1,2,3分别代入y=3x-2得:y=1,4,7,即B={1,4,7},
∵A={1,2,3},
∴A∩B={1},
故答案为:{1}

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\frac{\root{3}{mx-2}}{(m-1){x}^{2}+2(m-1)x+m}$的定义域是R,则实数m的取值范围是(  )
A.m>1B.m<1C.m≥1或m=0D.m≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知{an}是等差数列,且a1+a3+a8+a10=46,则a6+a5=(  )
A.12B.16C.20D.23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设定义在[-2,2]上的函数f(x)在区间[0,2]上单调递减,且f(1-m)<f(3m).
(1)若函数f(x)在区间[-2,2]上是奇函数,求实数m的取值范围.
(2)若函数f(x)在区间[-2,2]上是偶函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{\overrightarrow{a}}$=(λ+2,λ2-$\sqrt{3}$cos2a),向量$\overrightarrow{b}$=(m,$\frac{m}{2}$+sinacosa,其中λ,m,α为实数.若向量$\overrightarrow{a}$=2$\overrightarrow{b}$,则$\frac{λ}{m}$的取值范围为(  )
A.[-6,1]B.[-3,3]C.[1,7]D.[2,8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则{$\frac{1}{{a}_{n}}$}的前8项和为$\frac{16}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在一次案件中,公民D谋杀致死.嫌疑犯A、B、C对簿公堂.嫌疑犯A说:“我没有去D家,我和C去了B家”;嫌疑犯B说:“C去了A家,也去了D家”;嫌疑犯C说:“我没去D家”.由此推断嫌疑最大的是(  )
A.AB.BC.CD.A和C

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}|x|,x≤m\\{x^2}-2mx+4m,x>m\end{array}$,其中m>0,若对任意实数b,使得关于x的方程f(x)=b至多有两个不同的根,则m的取值范围是(0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,sinB+sin(A-B)=sinC是sinA=$\frac{{\sqrt{3}}}{2}$的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分也非必要条件

查看答案和解析>>

同步练习册答案