精英家教网 > 高中数学 > 题目详情
8.若函数f(x)=$\frac{2x+a}{x+1}$在区间(-∞,-1)上单调递减,则实数a的取值范围为(  )
A.(2,+∞)B.(0,2)C.[0,2)D.[2,+∞)

分析 利用分离常数法化简函数f(x),根据反比例函数的单调性即可得出实数a的取值范围.

解答 解:函数f(x)=$\frac{2x+a}{x+1}$=$\frac{2(x+1)+a-2}{x+1}$=2+$\frac{a-2}{x+1}$,
且f(x)在区间(-∞,-1)上单调递减,
所以a-2>0,
解得a>2,
所以实数a的取值范围是(2,+∞).
故选:A.

点评 本题主要考查函数的单调性判断问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数f(x)=lg(-x2+4x)的单调递增区间是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.$\sqrt{9-{x^2}}$=-x+m方程的解恰有1个,则m的范围为$\left\{{m|-3≤m<3或m=3\sqrt{2}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U={1,2,3,4,5,6,7,8,9},A={1,3,5,7,9},B={1,2,5,6,8},则A∩∁UB等于(  )
A.{3,7,9}B.{1,5}C.{2,6,8}D.{4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以椭圆9x2+5y2=45的焦点为焦点,且经过点M(2,$\sqrt{6}$)的椭圆的标准方程是(  )
A.$\frac{x^2}{12}+\frac{y^2}{8}$=1B.$\frac{y^2}{12}+\frac{x^2}{8}$=1C.$\frac{x^2}{6}+\frac{y^2}{4}$=1D.$\frac{y^2}{6}+\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和为Sn,点(n,$\frac{Sn}{n}$),n∈N*均在函数的图象上.
(1)求数列的{an}通项公式;
(2)若{bn}为等比数列,且b1=1,b1b2b3=27,求数列{an+bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-ax-5,}&{(x≤1)}\\{\frac{a}{x},}&{(x>1)}\end{array}\right.$在(-∞,+∞)上是增函数,则a的取值范围是(  )
A.(-∞,-2]B.[-2,0)C.[-3,0)D.[-3,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=\sqrt{3},|{\overrightarrow b}|=2,|{\overrightarrow a+\overrightarrow b}|=\sqrt{5}$,则向量$\overrightarrow a$与$\overrightarrow b$夹角的余弦值为(  )
A.$-\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{3}}}{6}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的内角A,B,C的对边分别为a,b,c,${a^2}+{c^2}-{b^2}-\sqrt{3}ac=0$.
(1)求B.
(2)若$a=\sqrt{3},b=1$,求A.

查看答案和解析>>

同步练习册答案