精英家教网 > 高中数学 > 题目详情
18.已知f(x)=$\left\{\begin{array}{l}\frac{1}{2}x+1,x≤0\\-{(x-1)^2},x>0\end{array}$,则使f(a)=-1成立的a值是-4或2.

分析 当a≤0时,f(a)=$\frac{1}{2}a+1$=-1;当a>0时,f(a)=-(a-1)2=-1.由此能求出使f(a)=-1成立的a值.

解答 解:∵f(x)=$\left\{\begin{array}{l}\frac{1}{2}x+1,x≤0\\-{(x-1)^2},x>0\end{array}$,f(a)=-1,
∴当a≤0时,f(a)=$\frac{1}{2}a+1$=-1,解得a=-4.
当a>0时,f(a)=-(a-1)2=-1,解得a=2或a=0(舍).
∴使f(a)=-1成立的a值是-4或2.
故答案为:-4或2.

点评 本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=45°,AB=2CD=4,M为腰BC的中点,则$\overrightarrow{MA}$•$\overrightarrow{MD}$=(  )
A.10B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.数列1$\frac{1}{2}$,4$\frac{1}{4}$,9$\frac{1}{8}$,16$\frac{1}{16}$…,前n项之和为(  )
A.$\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1+\frac{1}{{2}^{n}}$B.$\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$-$\frac{1}{{2}^{n}}$
C.$\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$+$\frac{1}{{2}^{n-1}}$D.$\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$-$\frac{1}{{2}^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.以点(0,3)为焦点的曲线是(  )
A.$\frac{y^2}{5}+\frac{x^2}{4}=1$B.$\frac{x^2}{12}+\frac{y^2}{3}=1$C.x2=-12yD.$\frac{y^2}{6}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.从某市高三数学考试成绩中,随机抽取了60名学生的成绩得到频率分布直方图如图:
(Ⅰ)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
(Ⅱ)若用分层抽样的方法从分数在[30,50)和[130,150)的学生中共抽取3人,该3人中分数在[130,150)的有几人?
(Ⅲ)从(Ⅱ)中抽取的3人中,随机抽取2人,求分数在[30,50)和[130,150)各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知动点P在直线x+y=6上,若过点P的直线l与圆x2+y2=2相切,切点为A,则P,A两点之间的距离的最小值是(  )
A.3$\sqrt{2}$B.2$\sqrt{5}$C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在样本方差的计算公式S2=$\frac{1}{20}$[(x1-40)2+(x2-40)2+…+(x20-40)2]中,数字20,40分别表示样本的(  )
A.容量,方差B.容量,平均数C.平均数,容量D.标准差,平均数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知各项均为正数的数列{an}满足:a1=3,$\frac{{a}_{n+1}+{a}_{n}}{n+1}$=$\frac{8}{{a}_{n+1}-{a}_{n}}$(n∈N*),设bn=$\frac{1}{{a}_{n}}$,Sn=b12+b22+…+bn2
(1)求数列{an}通项公式;
(2)求证:Sn$<\frac{1}{4}$;
(3)若数列{cn}满足cn=3n+(-1)n-1•2n•λ(λ为非零常数),确定λ的取值范围,使n∈N*时,都有cn+1>cn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知O为△ABC的外心,3$\overrightarrow{OA}$+5$\overrightarrow{OB}$+7$\overrightarrow{OC}$=$\overrightarrow{0}$,则∠ACB的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案