精英家教网 > 高中数学 > 题目详情
3.已知动点P在直线x+y=6上,若过点P的直线l与圆x2+y2=2相切,切点为A,则P,A两点之间的距离的最小值是(  )
A.3$\sqrt{2}$B.2$\sqrt{5}$C.4D.3

分析 由题意,P,A两点之间的距离取得最小值时,OP⊥l,求出圆心O到直线的距离,利用勾股定理,即可得出结论.

解答 解:由题意,P,A两点之间的距离取得最小值时,OP⊥l,
圆心O到直线的距离为$\frac{6}{\sqrt{2}}$=3$\sqrt{2}$,
∴P,A两点之间的距离的最小值是$\sqrt{(3\sqrt{2})^{2}-2}$=4,
故选C.

点评 本题考查直线与圆的位置关系,考查点到直线距离公式的运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=|2x+1+$\frac{a}{{2}^{x}}$|在[-$\frac{1}{2}$,3]上单调递增,则实数a的取值范围[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是棱PA上的动点.
(1)若Q是PA的中点,求证:PC∥平面BDQ;
(2)若PB=PD,求证:BD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知 f(x)、g(x)分别为奇函数、偶函数,且 f(x)+g(x)=2 x+2x,求 f(x)、g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=$\left\{\begin{array}{l}\frac{1}{2}x+1,x≤0\\-{(x-1)^2},x>0\end{array}$,则使f(a)=-1成立的a值是-4或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已函数f(x)=|2x+a|的增区间是[3,+∞),则实数a的取值是(  )
A.-6B.-5C.-4D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)的定义域为[-3,1],则函数g(x)=f(x+1)的定义域为[-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC的面积为S=$\frac{15\sqrt{3}}{4}$,AB=3,AC=5,$\overrightarrow{AB}$•$\overrightarrow{AC}$<0.
(1)求角A的大小; 
(2)求边BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.把点P的直角坐标$(1,1,\sqrt{6})$化为球坐标是(  )
A.$(2\sqrt{2},\frac{π}{4},\frac{π}{6})$B.$(2\sqrt{2},\frac{π}{4},\frac{π}{3})$C.$(2\sqrt{2},\frac{π}{6},\frac{π}{4})$D.$(2\sqrt{2},\frac{π}{3},\frac{π}{4})$

查看答案和解析>>

同步练习册答案