分析 (1)由已知及三角形面积公式可求sinA的值,又$\overrightarrow{AB}$•$\overrightarrow{AC}$<0,可得向量夹角A为钝角,即可得解A的值.
(2)由余弦定理可知BC的值.
解答 解:(1)因为△ABC的面积为S=$\frac{15\sqrt{3}}{4}$,
所以$\frac{1}{2}$×3×5×sinA=$\frac{15\sqrt{3}}{4}$,
所以sinA=$\frac{\sqrt{3}}{2}$,
又因为$\overrightarrow{AB}$•$\overrightarrow{AC}$<0,
所以角A为钝角,
所以A=$\frac{2π}{3}$.
(2)由余弦定理可知BC2=AB2+AC2-2AB×$AC×cosA=9+25-2×3×5×(-\frac{1}{2})$=49,
所以BC=7.
点评 本题主要考查了三角形面积公式,平面向量数量积的运算,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (0,2) | C. | ($\sqrt{2}$,+∞) | D. | (0,$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3$\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | α=-β | B. | α=180°+β | ||
| C. | α=k•360°+β,k∈Z | D. | α=k•360°±180°+β,k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com