精英家教网 > 高中数学 > 题目详情
12.△ABC的面积为S=$\frac{15\sqrt{3}}{4}$,AB=3,AC=5,$\overrightarrow{AB}$•$\overrightarrow{AC}$<0.
(1)求角A的大小; 
(2)求边BC.

分析 (1)由已知及三角形面积公式可求sinA的值,又$\overrightarrow{AB}$•$\overrightarrow{AC}$<0,可得向量夹角A为钝角,即可得解A的值.
 (2)由余弦定理可知BC的值.

解答 解:(1)因为△ABC的面积为S=$\frac{15\sqrt{3}}{4}$,
所以$\frac{1}{2}$×3×5×sinA=$\frac{15\sqrt{3}}{4}$,
所以sinA=$\frac{\sqrt{3}}{2}$,
又因为$\overrightarrow{AB}$•$\overrightarrow{AC}$<0,
所以角A为钝角,
所以A=$\frac{2π}{3}$.
 (2)由余弦定理可知BC2=AB2+AC2-2AB×$AC×cosA=9+25-2×3×5×(-\frac{1}{2})$=49,
所以BC=7.

点评 本题主要考查了三角形面积公式,平面向量数量积的运算,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=x+$\frac{2}{x}$(x>0)的单调减区间是(  )
A.(2,+∞)B.(0,2)C.($\sqrt{2}$,+∞)D.(0,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知动点P在直线x+y=6上,若过点P的直线l与圆x2+y2=2相切,切点为A,则P,A两点之间的距离的最小值是(  )
A.3$\sqrt{2}$B.2$\sqrt{5}$C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于简单随机抽样,下列说法中正确的为(  )
①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;
②它是从总体中按排列顺序逐个地进行抽取;
③它是一种不放回抽样;
④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,
而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性.
A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知各项均为正数的数列{an}满足:a1=3,$\frac{{a}_{n+1}+{a}_{n}}{n+1}$=$\frac{8}{{a}_{n+1}-{a}_{n}}$(n∈N*),设bn=$\frac{1}{{a}_{n}}$,Sn=b12+b22+…+bn2
(1)求数列{an}通项公式;
(2)求证:Sn$<\frac{1}{4}$;
(3)若数列{cn}满足cn=3n+(-1)n-1•2n•λ(λ为非零常数),确定λ的取值范围,使n∈N*时,都有cn+1>cn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.角α与角β的终边互为反向延长线,则(  )
A.α=-βB.α=180°+β
C.α=k•360°+β,k∈ZD.α=k•360°±180°+β,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax-xlna(a>l),g(x)=b-$\frac{3{x}^{2}}{2}$,e为自然对数的底数.
(1)当a=e,b=5时,求方程f(x)=g(x)的解的个数;
(2)若存在x1,x2∈[-l,1]使得f(x1)+g(x2)+$\frac{1}{2}$≥f(x2)=g(x1)+e成立,求实数a的取值范围.[注:(ax)′=axlna].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数列{an}满足an+an+1+an+2=6,若a1=4,a11=10,则a2013的值是(  )
A.-8B.4C.10D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,2),则$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案