分析 由题意 f(x)、g(x)分别为奇函数、偶函数,则有 f(-x)=-f(x),g(-x)=g(x)构造方程组求解.
解答 解:由题意 f(x)、g(x)分别为奇函数、偶函数,
则有 f(-x)=-f(x),g(-x)=g(x)
∵f ( x )+g ( x )=2 x+2x…①
∴f (-x )+g (-x )=2 -x-2x
可得:-f ( x )+g ( x )=2 -x-2x…②
将①②联立,
解得:g ( x )=$\frac{1}{2}({2}^{x}+{2}^{-x})$,
f ( x )=$\frac{1}{2}({2}^{x}-{2}^{-x})+2x$.
点评 本题考查了函数的奇偶性的运用求解函数的解析式问题.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (0,2) | C. | ($\sqrt{2}$,+∞) | D. | (0,$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{y^2}{5}+\frac{x^2}{4}=1$ | B. | $\frac{x^2}{12}+\frac{y^2}{3}=1$ | C. | x2=-12y | D. | $\frac{y^2}{6}-\frac{x^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3$\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com