精英家教网 > 高中数学 > 题目详情
3.“m=1”是“?x∈(0,+∞),m≤x+$\frac{1}{x}$-1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 结合不等式的性质,利用充分条件和必要条件的定义进行判断即可,

解答 解:∵“?x∈(0,+∞),x+$\frac{1}{x}$-1≥2$\sqrt{x•\frac{1}{x}}$-1=2-1=1,当且仅当x=1时取等号,
∴m≤1,
∴“m=1”是“?x∈(0,+∞),m≤x+$\frac{1}{x}$-1”的充分不必要条件,
故选:A.

点评 本题主要考查充分条件和必要条件的应用,利用基本不等式是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.命题“存在x∈R,使得x2+2x+1=0成立”的否定是对任意x∈R,都有x2+2x+1≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线l1:ax+2y+2=0和直线l2:3x+(a-1)y-a+5=0垂直,则a的值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是某几何体的三视图,则该几何体的表面积是(  )
A.2$\sqrt{3}$+$\frac{3\sqrt{7}}{2}$B.2$\sqrt{3}$+$\sqrt{15}$C.2$\sqrt{3}$+2$\sqrt{15}$D.2$\sqrt{3}$+3$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线y2=2px(p>0)与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点F,若点A是抛物线与双曲线的一个交点,且AF⊥x轴,则双曲线的离心率为(  )
A.$\frac{\sqrt{5}+1}{2}$B.$\sqrt{2}$+1C.$\sqrt{3}$+1D.$\frac{2\sqrt{2}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知某工厂工人某天加工的零件个数的茎叶图如图所示,那么工人生产的零件个数超过130的比例是(  )
A.13.3%B.10%C.$\frac{3}{20}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正实数x+y满足logax+logay=c,其中a>1,c∈R.
(1)若a=c=2,则x+y的最小值为4;
(2)若c=3时,对任意的x∈[a,2a],都有y∈[a,a2]使得上述方程成立,则a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(Ⅰ)已知α为第三象限角,f(α)=$\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}}{tan(-α-π)sin(-α-π)}$.
①化简f(α);②若cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值.
(Ⅱ)已知角α满足$\frac{sinα+cosα}{2sinα-cosα}$=2;
①求tanα的值;②求sin2α+2cos2α-sinαcosα的值.

查看答案和解析>>

同步练习册答案