精英家教网 > 高中数学 > 题目详情
17.计算:$\frac{(\sqrt{2}+\sqrt{2}i)^{2}(4+5i)}{(5-4i)(1-i)}$.

分析 直接利用复数代数形式的乘除运算化简求值.

解答 解:$\frac{(\sqrt{2}+\sqrt{2}i)^{2}(4+5i)}{(5-4i)(1-i)}$=$\frac{4i(4+5i)}{5-5i-4i-4}=\frac{-20+16i}{1-9i}=\frac{(-20+16i)(1+9i)}{(1-9i)(1+9i)}$=$\frac{-164-164i}{82}=-2-2i$.

点评 本题考查了复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将1,2,3,…,n这n个数随机排成一列,得到的一列数a1,a2,…,an称为1,2,3,…,n的一个排列;定义r(a1,a2,…,an)=|a1-a2|+|a2-a3|+…|an-1-an|为排列a1,a2,…,an的波动强度,当n=2012时,则r(a1,a2,…,an)的最小值为2011,当n=2k(k≥2,k∈N+)时,则r(a1,a2,…,an)的最大值$\frac{{n}^{2}}{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若sin(a-3π)=2cos(a-4π),则sin(π-a)+$\frac{6cos(2π-a)}{2cos(π+a)}$-sin(-a)=±$\frac{4\sqrt{5}}{5}$-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知α、β均为锐角,cos(α+β)=sin(α-β),若f(α)=sin(α+$\frac{π}{4}$)+cos(α-$\frac{π}{4}$),求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x}-1,0<x<1}\\{k-\frac{k}{x},x≥1}\end{array}\right.$.
(1)是否存在实数a,b(1≤a<b),使得函数y=f(x)的定义域、值域都是[a,b],如果存在,并求出a,b的值(用k表示);如果不存在,说明理由.
(2)若存在实数a,b(0<a<b),使得函数y=f(x)的定义域为[a,b]时,值域为[ma,mb],求m的取值范围(用k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知曲线C的参数方程式:$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t是参数),直线l的极坐标方程式2pcosθ+psinθ-4=0.
(1)将曲线C的参数方程转化为普通方程,将直线l的极坐标方程化为直角坐标方程.
(2))若直线l与曲线C交于A,B,求AB中点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}是首项为1的数列,且当n≥2时,$\frac{{S}_{n}}{n}$=$\frac{{S}_{n-1}}{n-1}$+$\frac{1}{2}$.
(1)证明:{an}是等差数列;
(2)若数列{$\frac{1}{{S}_{n}}$}的前n项和为Tn,求T60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a∈{-2,0,1,3,4},b∈{1,2},则函数f(x)=(a2-2)x+b为增函数的概率是(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{3}{10}$

查看答案和解析>>

同步练习册答案