精英家教网 > 高中数学 > 题目详情
17.设F1,F2分别为椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{{b{\;}^2}}$=1(a>b>0)的左、右两个焦点,若椭圆C上的点A(1,$\frac{3}{2}$)到F1,F2两点的距离之和等于4.
(1)求出椭圆C的方程和焦点坐标;
(2)过点P(0,$\frac{3}{2}$)的直线与椭圆交于两点M,N,若以M,N为直径的圆通过原点,求直线MN的方程.

分析 (1)由题意可得:$\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}$=1,2a=4,a2=b2+c2,联立解出即可得出.
(2)设直线MN的方程为:y=kx+$\frac{3}{2}$,M(x1,y1),N(x2,y2).直线方程与题意方程联立化为:(3+4k2)x2+12kx-3=0,由$\overrightarrow{OM}$⊥$\overrightarrow{ON}$,可得$\overrightarrow{OM}$•$\overrightarrow{ON}$=x1•x2+y1y2=0,利用根与系数的关系代入解出k即可得出.

解答 解:(1)由题意可得:$\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}$=1,2a=4,a2=b2+c2
联立解得:a=2,b=$\sqrt{3}$,c=1.
∴椭圆C的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,焦点坐标为:(±1,0).
(2)设直线MN的方程为:y=kx+$\frac{3}{2}$,M(x1,y1),N(x2,y2).
联立$\left\{\begin{array}{l}{y=kx+\frac{3}{2}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,化为:(3+4k2)x2+12kx-3=0,
∴x1+x2=$\frac{-12k}{3+4{k}^{2}}$,x1•x2=$\frac{-3}{3+4{k}^{2}}$,
∵$\overrightarrow{OM}$⊥$\overrightarrow{ON}$,∴$\overrightarrow{OM}$•$\overrightarrow{ON}$=x1•x2+y1y2=0,
∴x1•x2+$(k{x}_{1}+\frac{3}{2})$$(k{x}_{2}+\frac{3}{2})$=0,
∴(1+k2)x1•x2+$\frac{3}{2}$k(x1+x2)+$\frac{9}{4}$=0,
∴(1+k2)•$\frac{-3}{3+4{k}^{2}}$+$\frac{3}{2}$k•$\frac{-12k}{3+4{k}^{2}}$+$\frac{9}{4}$=0,
化为:16k2=5,
解得k=$±\frac{\sqrt{5}}{4}$.
∴直线MN的方程为y=$±\frac{\sqrt{5}}{4}$x+$\frac{3}{2}$.

点评 本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系、圆的性质、向量垂直与数量积的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.图中的三个正方形方块中,着色正方形的个数依次构成一个数列的前3项,这个数列的第5项是(  )
A.2187B.4681C.729D.3125

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在R上的函数f(x)满足f(x-1)的对称轴为x=1,$f({x-1})=\frac{4}{f(x)}$(f(x)≠0),且在区间(-1,0)上单调递减.已知α,β是钝角三角形中两锐角,则f(sinα)和f(cosβ)的大小关系是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)D.以上情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从5名志愿者中选出4名分别从事主持、策划、演员、配乐四项不同的工作,其中甲志愿者不能从事配乐工作,则不同的选排方法共有(  )
A.96种B.180种C.120种D.72种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于定义域为D的函数f(x)=k+$\sqrt{x+2}$,满足存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],求实数k的取值范围$(-\frac{9}{4},-2]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知公比为q的等比数列{an}的前6项和S6=21,且4a1,$\frac{3}{2}$a2,a2成等差数列.
(1)求an
(2)设{bn}是首项为2,公差为-a1的等差数列,求数列{|bn|}前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-lnx.
(1)求f(x)的单调区间;
(2)若方程f(x)=0恰有两解,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.阅读如图所示的程序框图,若输入P=2013,则输出的S是$\frac{2013}{2014}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知α,β是两个不同的平面,m.n是两条不同的直线,则下列命题中正确的是(  )
A.若m∥n,m?β,则n∥βB.若m∥α,α∩β=n,则m∥n
C.若m⊥α,m⊥β,则α∥βD.若m⊥β,α⊥β,则m∥α

查看答案和解析>>

同步练习册答案