精英家教网 > 高中数学 > 题目详情
18.已知集合A={x|-3≤x≤6},B={x|2a-1≤x≤a+1};
(1)若a=-2,求A∪B;
(2)若A∩B=B,求实数a的取值范围.

分析 (1)当a=-2,根据集合的基本运算即可求A∪B;
(2)根据A∩B=B,建立条件关系即可求实数a的取值范围.

解答 解:(1)集合A={x|-3≤x≤6},B={x|2a-1≤x≤a+1};
当a=-2时,集合B={x|-5≤x≤-1};
∴A∪B=[-5,6]
(2)∵A∩B=B
∴B⊆A
当B=∅时,满足题意,则2a-1>a+1,解得:a>2.
当B≠∅时,要使B⊆A,则有$\left\{{\begin{array}{l}{2a-1≤a+1}\\{2a-1≥-3}\\{a+1≤6}\end{array}}\right.$,
解得:-1≤a≤2.
综上所述:实数a的取值范围是[-1,2].

点评 本题考查了集合的化简与运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足3(n+1)an=nan+1(n∈N*),且a1=3,
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
(3)若$\frac{a_n}{b_n}$=$\frac{2n+3}{n+1}$,求证:$\frac{5}{6}$≤$\frac{1}{b_1}$+$\frac{1}{b_2}$+…+$\frac{1}{b_n}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列各函数的导数
(1)y=3x2-x+5
(2)f(x)=6logax
(3)$y=\frac{sinx}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为$ρsin({θ+\frac{π}{4}})=\frac{{3\sqrt{2}}}{2}$,曲线C的参数方程是$\left\{{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sinα}\end{array}}\right.$(α是参数).
(1)求直线l的直角坐标方程及曲线C的普通方程;
(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为了得到函数y=sin(2x+1)的图象,只需把函数y=sin2x的图象上所有的点(  )
A.向左平行移动$\frac{1}{2}$个长度单位B.向右平行移动$\frac{1}{2}$个长度单位
C.向左平行移动1个长度单位D.向右平行移动1个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,在区间(0,1)上是减函数是(  )
A.y=|x+1|B.y=3-xC.y=$-\frac{1}{x}$D.y=x2-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“?x∈R,使$3_{\;}^x+4_{\;}^x>5_{\;}^x$”的否定为(  )
A.?x∈R,使$3_{\;}^x+4_{\;}^x≤5_{\;}^x$B.?x∈R,使$3_{\;}^x+4_{\;}^x<5_{\;}^x$
C.?x∈R,使$3_{\;}^x+4_{\;}^x>5_{\;}^x$D.?x∈R,使$3_{\;}^x+4_{\;}^x≤5_{\;}^x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A,B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的坐标为(4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)的图象与函数h(x)=x+$\frac{1}{x}$+2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)求f(x)在(0,8]内的最值.

查看答案和解析>>

同步练习册答案