分析 (1)当a=-2,根据集合的基本运算即可求A∪B;
(2)根据A∩B=B,建立条件关系即可求实数a的取值范围.
解答 解:(1)集合A={x|-3≤x≤6},B={x|2a-1≤x≤a+1};
当a=-2时,集合B={x|-5≤x≤-1};
∴A∪B=[-5,6]
(2)∵A∩B=B
∴B⊆A
当B=∅时,满足题意,则2a-1>a+1,解得:a>2.
当B≠∅时,要使B⊆A,则有$\left\{{\begin{array}{l}{2a-1≤a+1}\\{2a-1≥-3}\\{a+1≤6}\end{array}}\right.$,
解得:-1≤a≤2.
综上所述:实数a的取值范围是[-1,2].
点评 本题考查了集合的化简与运算,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平行移动$\frac{1}{2}$个长度单位 | B. | 向右平行移动$\frac{1}{2}$个长度单位 | ||
| C. | 向左平行移动1个长度单位 | D. | 向右平行移动1个长度单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,使$3_{\;}^x+4_{\;}^x≤5_{\;}^x$ | B. | ?x∈R,使$3_{\;}^x+4_{\;}^x<5_{\;}^x$ | ||
| C. | ?x∈R,使$3_{\;}^x+4_{\;}^x>5_{\;}^x$ | D. | ?x∈R,使$3_{\;}^x+4_{\;}^x≤5_{\;}^x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com