分析 作出不等式组对应的平面区域,利用z的几何意义即可得到结论.
解答
解:由z=2x+y,得y=-2x+z
作出不等式组对应的平面区域如图:
由图象可知当直线y=-2x+z过点A时,直线y=-2x+z的在y轴的截距最小,此时z最小,
由$\left\{\begin{array}{l}{x+y-2=0}\\{x-2y+4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,即A(0,2),
此时z=2×0+2=2,
故答案为:2.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com