精英家教网 > 高中数学 > 题目详情

【题目】写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来:

(1)60°; (2)-21°.

【答案】(1) 集合S={β|β=+60°kZ} β=-300°,β=60°β=420°.(2) 集合S={β|β=-21°kZ},β=-21°, β=339°,β=699°.

【解析】

根据终边相同的角的概念,写出与所求角的终边相同的角的集合S,再求出S中适合条件的元素β即可.

解:(160°,终边所在的集合S={β|β=+60°kZ}

k=-1时,β=-300°k=0时,β=60°k=1时,β=420°

S中适合不等式-360°≤β720°的元素β为:-300°60°420°.

2-21°,终边所在的集合S={β|β=-21°kZ}

k=0β=-21°,;k=1时,β=339°k=2时,β=699°.

S中适合不等式-360°≤β720°的元素β为:-21°339°699°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有AB两个投资项目,投资两项目所获得利润分别是(万元),它们与投入资金(万元)的关系依次是:其中平方根成正比,且当4(万元)时1(万元),又成正比,当4(万元)时也是1(万元);某人甲有3万元资金投资.

)分别求出的函数关系式;

)请帮甲设计一个合理的投资方案,使其获利最大,并求出最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中:

定义在R上的函数f(x)在区间(-∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f(x)R上是增函数;f(2)=f(-2),则函数f(x)不是奇函数;函数y=x-0.5(0,1)上的减函数;对应法则和值域相同的函数的定义域也相同;x0是二次函数y=f(x)的零点,m<x0<n,那么f(m)f(n)<0一定成立.

写出上述所有正确结论的序号:_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求满足的值;

(2)若函数是定义在上的奇函数.

①存在,使得不等式有解,求实数的取值范围;

②若函数满足,若对任意,不等式恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.

(1)求证:

(2)若的中点.

(i)过点作一直线平行,在图中画出直线并说明理由;

(ii)求平面将三棱锥分成的两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=的图象与函数y=2sinπx(﹣3≤x≤5)的图象所有交点的横坐标之和等于( )

A.2 B.4 C.6 D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的一段图像如图所示.

(1)求此函数的解析式;

(2)求此函数在上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格(元)与时间(天)的函数关系近似满足为正常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:

(天)

10

20

25

30

(个)

110

120

125

120

已知第10天该商品的日销售收入为121.

I)求的值;

II)给出以下二种函数模型:

,②

请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量与时间的关系,并求出该函数的解析式;

III)求该商品的日销售收入(元)的最小值.

(函数,在区间上单调递减,在区间上单调递增.性质直接应用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)试作出的图象,并根据图象写出的单调区间;

(2)若函数有两个零点,求实数b的取值范围.

查看答案和解析>>

同步练习册答案