精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,丄平面,.

(1)证明;

(2)求二面角的正弦值;

(3)设为棱上的点,满足异面直线所成的角为,求的长.

【答案】(1)见证明;(2) ;(3)

【解析】

(1)要证异面直线垂直,即证线面垂直,本题需证平面

2)作于点,连接 为二面角的平面角,在中解出即可。

(3)过点的平行线与线段相交,交点为,连接;计算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的长

(1)证明:由平面,可得

又由,故平面

平面,所以

(2)如图,作于点,连接

,可得平面

因此,从而为二面角的平面角。

中,,由此得

由(1)知,故在中,

因此所以二面角

的正弦值为

(3)因为,故过点的平行线必与线段相交,

设交点为,连接

或其补角为异面直线所成的角;

由于,故

中,

∴在中,由

可得:

由余弦定理,可得,

解得:,设

中,

中,

∴在中,,∴

解得;∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5 ,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个产品有若千零部件构成,加工时需要经过6道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系.若加工工序必须要在工序完成后才能开工,则称的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:

工序

加工时间

3

4

2

2

2

1

紧前工序

现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是__________小时.(假定每道工序只能安排在一台机器上,且不能间断).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切且被轴截得的弦长为,圆的面积小于13.

(Ⅰ)求圆的标准方程;

(Ⅱ)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线恰好平行?如果存在,求出的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xax+(a1)

1)讨论函数的单调性;

2)证明:若,则对任意xxxx,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某种书籍的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.

表中.

为了预测印刷20千册时每册的成本费,建立了两个回归模型:.

(1)根据散点图,拟认为选择哪个模型预测更可靠?(只选出模型即可)

(2)根据所给数据和(1)中的模型选择,求关于的回归方程,并预测印刷20千册时每册的成本费.

附:对于一组数据,其回归方程中斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一元二次函数

1)写出该函数的顶点坐标;

2)如果该函数在区间上的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,且过点.为椭圆的右焦点, 为椭圆上关于原点对称的两点,连结并延长,分别交椭圆于两点.

(1)求椭圆的标准方程;

(2)设直线的斜率分别为,是否存在实数,使得?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案