精英家教网 > 高中数学 > 题目详情
19.已知p:?x∈R,mx2+1≤0,q:?x∈R,x2+mx+1>0,若p∨q为假命题,则实数m的取值范围是[2,+∞).

分析 由题意,可先解出两命题都是真命题时的参数m的取值范围,再由pVq为假命题,得出两命题都是假命题,求出两命题都是假命题的参数m的取值范围,它们的公共部分就是所求.

解答 解:由p:?x∈R,mx2+1≤0,可得m<0,
由q:?x∈R,x2+mx+1>0,可得△=m2-4<0,解得-2<m<2,
因为pVq为假命题,所以p与q都是假命题,
若p是假命题,则有m≥0;若q是假命题,则有m≤-2或m≥2,
故符合条件的实数m的取值范围为m≥2,
故答案为:[2,+∞).

点评 本题考查复合命题的真假判断,解题的关键是准确理解复合命题的真假判断规则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若经过原点的直线l与直线y=$\frac{{\sqrt{3}}}{3}$x+1的夹角为30°,则直线l的倾斜角是(  )
A.B.60°C.0°或60°D.60°或90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图几何体中不是柱体的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设二阶矩阵M是把坐标平面上点的横坐标不变、纵坐标沿y方向伸长为原来5倍的伸压变换.
(1)求直线4x-10y=1在M作用下的方程;
(2)求M的特征值与特征向量.
(3)求M5$[\begin{array}{l}2\\ 3\end{array}]$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f(3x-4)=22x-1+1,则f(-1)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:对于任意非零实数x,不等式m<$\frac{{x}^{4}-x^2+1}{{x}^{2}}$恒成立;命题q:函数f(x)=x2-2mx在区间(2,+∞)上是增函数,若命题p和命题q有且只有一个真命题,则实数m的取值范围是(  )
A.(1,2)B.[1,2]C.(-∞,1]D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$\overrightarrow{a}$表示向东走10km,$\overrightarrow{b}$表示向北走10$\sqrt{3}$km,则$\overrightarrow{a}-\overrightarrow{b}$表示(  )
A.向南偏西30°走20kmB.向北偏西30°走20km
C.向南偏东30°走20kmD.向北偏东30°走20km

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13,
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和.
(Ⅲ)求{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.抛掷一枚质地均匀的硬币,出现正面向上和反面向上的概率都为$\frac{1}{2}$,构造数列{an},使an=$\left\{\begin{array}{l}{1,第n次正面向上}\\{-1,第n次把反面向上}\end{array}\right.$,记Sn=a1+a2+…+an,则S2≠0且S8=2的概率为(  )
A.$\frac{43}{128}$B.$\frac{43}{64}$C.$\frac{13}{128}$D.$\frac{13}{64}$

查看答案和解析>>

同步练习册答案