| 解:(1)证明:如图,由PA⊥底面ABCD,得PA⊥AB 又PA=AB,故△PAB为等腰直角三角形, 而点E是棱PB的中点,所以AE⊥PB 由题意知BC⊥AB, 又AB是PB在面ABCD内的射影, 由三垂线定理,得BC⊥PB, 从而BC⊥平面PAB, 故BC⊥AE 因AE⊥PB,AE⊥BC, 所以AE⊥平面PBC。 (2)由(1)知BC⊥平面PAB, 又AD∥BC,得AD⊥平面PAB,故AD⊥AE, 在Rt△PAB中, 从而在Rt△DAE中, 在Rt△CBE中, 又 所以△CED为等边三角形 取CE的中点F,连接DF,则DF⊥CE 因BE=BC=1,且BC⊥BE,则△EBC为等腰直角三角形, 连接BF,则BF⊥CE, 所以∠BFD为所求的二面角的平面角 连接BD,在△BFD中, 所以 故二面角B-EC-D的平面角的余弦值为 |
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
| AE |
| AP |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
| ||
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com