精英家教网 > 高中数学 > 题目详情
2.某种放射性元素的原子数N随时间t的变化规律是N=N0e-λt,其中N0,λ是正的常数.
(1)说明函数是增函数还是减函数;
(2)把t表示为原子数N的函数;
(3)当N=$\frac{{N}_{0}}{2}$时,求t的值.

分析 (1)根据N=N0e-λt =$\frac{{N}_{0}}{{e}^{λt}}$,可得函数N是减函数.
(2)利用指数式与对数式的互化,可以把t表示为原子数N的函数.
(3)当N=$\frac{{N}_{0}}{2}$时,有 e-λt =$\frac{1}{2}$,即-λt=ln$\frac{1}{2}$=-ln2,从而求得t的值.

解答 解:(1)∵N=N0e-λt,其中N0,λ是正的常数,
∴N=N0e-λt =$\frac{{N}_{0}}{{e}^{λt}}$,当t增大时,N减小,
故函数N是减函数.
(2)∵N=N0e-λt,∴$\frac{N}{{N}_{0}}$=e-λt,∴-λt=ln$\frac{N}{{N}_{0}}$,∴t=$\frac{ln\frac{N}{{N}_{0}}}{-λ}$.
(3)当N=$\frac{{N}_{0}}{2}$时,有e-λt =$\frac{1}{2}$,∴-λt=ln$\frac{1}{2}$=-ln2,t=$\frac{1}{-λ}$•(-ln2)=$\frac{ln2}{λ}$.

点评 本题主要考查函数的单调性的判断,指数式与对数式的互化,求函数的解析式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知a=31.2,b=2log30.3,c=0.82.3,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.侧棱长和底面边长均为1的正四棱锥的侧面积为(  )
A.$\sqrt{3}$B.2C.3D.$\frac{3\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=mlnx+$\frac{m^2}{x}$(其中m为常数),且x=1是f(x)的极值点.
(Ⅰ)设曲线y=f(x)在($\frac{1}{e}$,f($\frac{1}{e}$))处的切线为l,求l与坐标轴围成的三角形的面积;
(Ⅱ)求证:f(x)>4f′(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx+$\frac{a}{x}$(a>1).
(1)若函数f(x)的图象在x=1处的切线斜率为-1,求该切线与两坐标轴围成的三角形的面积;
(2)若函数f(x)在区间[1,e]上的最小值是2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.黄冈中学邀请一批专家来为理科实验班的学生举办5期知识讲座,其中Q大学教授3人,不参加最后一期讲座,B大学教授2人,不参加相邻两期讲座,则共有36种安排方法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.rn,n是不同的直线,α,β是不重合的平面,下列说法正确的是(  )
A.若α∥β,m?α,n?β,则m∥n
B.若m,n?α,m∥β,n∥β,则α∥β
C.m,n是异面直线,若m∥α,m∥β,n∥β,则α∥β
D.若α∥β,m∥α,则m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知正方体ABCD-A1B1C1D1的棱长为1,点O是BD1的中点,M是棱AA1上的一点,请问:
(1)若M是AA1的中点,求直线MO与AD1所成角的大小;
(2)若M在线段AA1(不为点A)上运动,试求三棱锥M-ABD1体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心在坐标原点,焦点在x轴上,它过点(0,1),离心率为$\frac{2\sqrt{5}}{5}$.
(1)求椭圆C的标准方程;
(2)过椭圆C的左焦点F作直线l交椭圆C于G,H两点,交y轴于点M,若$\overrightarrow{MG}=m\overrightarrow{FG}$,$\overrightarrow{MH}$=n$\overrightarrow{FH}$,判断m+n是否为定值,若为定值,请求出该定值,若不是请说明理由.

查看答案和解析>>

同步练习册答案