精英家教网 > 高中数学 > 题目详情
18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心在坐标原点,焦点在x轴上,它过点(0,1),离心率为$\frac{2\sqrt{5}}{5}$.
(1)求椭圆C的标准方程;
(2)过椭圆C的左焦点F作直线l交椭圆C于G,H两点,交y轴于点M,若$\overrightarrow{MG}=m\overrightarrow{FG}$,$\overrightarrow{MH}$=n$\overrightarrow{FH}$,判断m+n是否为定值,若为定值,请求出该定值,若不是请说明理由.

分析 (1)由椭圆过点(0,1),离心率为$\frac{2\sqrt{5}}{5}$,列出方程组求出a=$\sqrt{5}$,b=1,c=2,由此能求出椭圆C的标准方程.
(2)求出椭圆C的右焦点F(2,0),设直线l的方程为y=k(x+2),代入方程$\frac{{x}^{2}}{5}$+y2=1,得(1+5k2)x2+20k2x+20k2-5=0,由此利用韦达定理、向量,结合已知条件能求出m+n的值.

解答 解:(1)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心在坐标原点,焦点在x轴上,它过点(0,1),离心率为$\frac{2\sqrt{5}}{5}$,
∴$\left\{\begin{array}{l}{b=1}\\{\frac{c}{a}=\frac{2\sqrt{5}}{5}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=$\sqrt{5}$,b=1,c=2,
∴椭圆C的标准方程为$\frac{{x}^{2}}{5}$+y2=1.
(2)由(1)得椭圆C的右焦点F(2,0),
设G(x1,y1),H(x2,y2),M(0,y0),
由题意得直线l的斜率存在,设直线l的方程为y=k(x+2),代入方程$\frac{{x}^{2}}{5}$+y2=1,
得(1+5k2)x2+20k2x+20k2-5=0.
∴x1+x2=-$\frac{20{k}^{2}}{1+5{k}^{2}}$,x1x2=$\frac{20{k}^{2}-5}{1+5{k}^{2}}$.
又$\overrightarrow{MG}$=(x1,y1-y0),$\overrightarrow{MH}$=(x2,y2-y0),$\overrightarrow{FG}$=(x1-2,y1),$\overrightarrow{FH}$=(x2-2,y2).
$\overrightarrow{MG}=m\overrightarrow{FG}$$\overrightarrow{MH}=n\overrightarrow{FH}$,
∴m=$\frac{x_1}{{{x_1}+2}}$,n=$\frac{x_2}{{{x_2}+2}}$,
∴m+n=$\frac{x_1}{{{x_1}+2}}$+$\frac{x_2}{{{x_2}+2}}$=$\frac{{2{x_1}{x_2}+2({x_1}+{x_2})}}{{{x_1}{x_2}+2({x_1}+{x_2})+4}}=\frac{{2(\frac{{20{k^2}-5}}{{1+5{k^2}}})+\frac{{2(-20{k^2})}}{{1+5{k^2}}}}}{{\frac{{20{k^2}-5}}{{1+5{k^2}}}+\frac{{2(-20{k^2})}}{{1+5{k^2}}}+4}}$,
=$\frac{{2(20{k^2}-5)+2(-20{k^2})}}{{(20{k^2}-5)+2(-20{k^2})+4(1+5{k^2})}}=10$,
∴m+n=10.

点评 本题考查椭圆方程的求法,考查m+n是否为定值的判断与求法,是中档题,解题时要认真审题,注意韦达定理、向量、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某种放射性元素的原子数N随时间t的变化规律是N=N0e-λt,其中N0,λ是正的常数.
(1)说明函数是增函数还是减函数;
(2)把t表示为原子数N的函数;
(3)当N=$\frac{{N}_{0}}{2}$时,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图矩形ABCD所在平面外一点P,连接PB,PB,PD,点E,F分别是PB,PC的中点,求证:EF∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)=$\frac{ex}{1+a{x}^{2}}$,其中a为正实数.
(1)当a=$\frac{16}{15}$时,求f(x)的极值点;
(2)若f(x)为R上的单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.平面内有两个定点A(1,0),B(1,-2),设点P到A的距离为d1,到B的距离为d2,且$\frac{d_1}{d_2}=\sqrt{2}$.
(1)求点P的轨迹C的方程;
(2)点M(0,1)与点N关于直线x-y=0对称,问:是否存在过点N的直线l,l与轨迹C相交于E、F两点,且使三角形${S_{△OEF}}=2\sqrt{2}$(O为坐标原点)?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的焦点与双曲线$\frac{{x}^{2}}{3}$-y2=1的焦点相同,且该椭圆的离心率是$\frac{1}{2}$.
(1)求椭圆C的标准方程;
(2)直线l过原点且斜率为$\frac{4}{3}$,求以椭圆的右焦点为圆心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(文科)如图所示的封闭曲线C由曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,y≥0)和曲线C2:x2+y2=r2(y<0)组成,已知曲线C1过点($\sqrt{3}$,$\frac{1}{2}$),离心率为$\frac{\sqrt{3}}{2}$,点A、B分别为曲线C与x轴、y轴的一个交点.
(Ⅰ)求曲线C1和C2的方程;
(Ⅱ)若点Q是曲线C2上的任意点,求△QAB面积的最大值;
(Ⅲ)若点F为曲线C1的右焦点,直线l:y=kx+m与曲线C1相切于点M,与x轴交于点N,直线OM与直线x=$\frac{4\sqrt{3}}{3}$交于点P,求证:MF∥PN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x,y满足x2+y2=1,则$\frac{y-2}{x-1}$的最小值为(  )
A.$\frac{1}{2}$B.2C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\left\{\begin{array}{l}{6^x}-m,\begin{array}{l}{x<1}\end{array}\\{x^2}-3mx+2{m^2},x≥1\end{array}$恰有2个零点,则实数m的取值范围是[$\frac{1}{2}$,1)∪[6,+∞).

查看答案和解析>>

同步练习册答案