10£®£¨ÎĿƣ©ÈçͼËùʾµÄ·â±ÕÇúÏßCÓÉÇúÏßC1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£¬y¡Ý0£©ºÍÇúÏßC2£ºx2+y2=r2£¨y£¼0£©×é³É£¬ÒÑÖªÇúÏßC1¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬µãA¡¢B·Ö±ðΪÇúÏßCÓëxÖá¡¢yÖáµÄÒ»¸ö½»µã£®
£¨¢ñ£©ÇóÇúÏßC1ºÍC2µÄ·½³Ì£»
£¨¢ò£©ÈôµãQÊÇÇúÏßC2ÉϵÄÈÎÒâµã£¬Çó¡÷QABÃæ»ýµÄ×î´óÖµ£»
£¨¢ó£©ÈôµãFΪÇúÏßC1µÄÓÒ½¹µã£¬Ö±Ïßl£ºy=kx+mÓëÇúÏßC1ÏàÇÐÓÚµãM£¬ÓëxÖá½»ÓÚµãN£¬Ö±ÏßOMÓëÖ±Ïßx=$\frac{4\sqrt{3}}{3}$½»ÓÚµãP£¬ÇóÖ¤£ºMF¡ÎPN£®

·ÖÎö £¨I£©ÇúÏßC1¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¿ÉµÃ$\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}$=1£¬$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬ÓÖa2=b2+c2£¬ÁªÁ¢½âµÃa£¬b£¬¿ÉµÃÇúÏßC1µÄ·½³Ì£®¿ÉµÃA£¬µãAÔÚÇúÏßC2ÉÏ£¬¿ÉµÃr£®
£¨II£©A£¨-2£¬0£©£¬B£¨0£¬1£©£¬ÀûÓýؾàʽ¿ÉµÃÖ±ÏßABµÄ·½³Ì£®ÓÉÌâÒâ¿ÉÖª£ºµ±ÇúÏßC2ÔÚµãQ´¦µÄÇÐÏßÓëÖ±ÏßABƽÐÐʱ£¬¡÷QABµÄÃæ»ý×î´ó£¬ÉèÇÐÏß·½³ÌΪ£ºx-2y+t=0£¬ÓÉÖ±ÏßÓëÔ²ÏàÇеÄÐÔÖʿɵÃt£®ÀûÓÃÆ½ÐÐÏßÖ®¼äµÄ¾àÀ빫ʽ¿ÉµÃ¡÷QABµÄAB±ßÉϵĸßh£¬¼´¿ÉµÃ³öS¡÷QABµÄ×î´óÖµ=$\frac{1}{2}$|AB|h£®
£¨III£©ÓÉÌâÒâ¿ÉµÃ£ºk¡Ù0£¬F$£¨\sqrt{3}£¬0£©$£¬N$£¨-\frac{m}{k}£¬0£©$£®ÉèM£¨x0£¬y0£©£¬Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨1+4k2£©x2+8kmx+4m2-4=0£¬ÓÖÖ±ÏßlÓëÇúÏßC1ÏàÇÐÓÚµãM£¬¿ÉµÃ¡÷=0£¬¼´m2=4k2+1£®ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃM£¬kOM£¬µãPµÄ×ø±ê£®¿ÉµÃ$\overrightarrow{FM}$=¦Ë$\overrightarrow{NP}$£¬¼´¿ÉÖ¤Ã÷MF¡ÎPN£®

½â´ð £¨I£©½â£º¡ßÇúÏßC1¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬
¡à$\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}$=1£¬$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬ÓÖa2=b2+c2£¬ÁªÁ¢½âµÃa=2£¬b=1£¬
¿ÉµÃÇúÏßC1µÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}$+y2=1£¬£¨y¡Ý0£©£®
¿ÉµÃA£¨-2£¬0£©£¬¡ßµãAÔÚÇúÏßC2ÉÏ£¬¡àr=2£¬¿ÉµÃ·½³Ì£ºx2+y2=4£¨y£¼0£©£®
£¨II£©½â£ºA£¨-2£¬0£©£¬B£¨0£¬1£©£¬¿ÉµÃÖ±ÏßABµÄ·½³Ì£º$\frac{x}{-2}+\frac{y}{1}$=1£¬»¯Îª£ºx-2y+2=0£®
ÓÉÌâÒâ¿ÉÖª£ºµ±ÇúÏßC2ÔÚµãQ´¦µÄÇÐÏßÓëÖ±ÏßABƽÐÐʱ£¬¡÷QABµÄÃæ»ý×î´ó£¬
ÉèÇÐÏß·½³ÌΪ£ºx-2y+t=0£¬ÓÉÖ±ÏßÔ²ÏàÇеÄÐÔÖʿɵãº$\frac{|t|}{\sqrt{5}}$=2£¬ÓÉ¿ÉÖªt£¼0£¬½âµÃt=-2$\sqrt{5}$£®
´Ëʱ¡÷QABµÄAB±ßÉϵĸßh=$\frac{|2-£¨-2\sqrt{5}£©|}{\sqrt{5}}$=2+$\frac{2\sqrt{5}}{5}$£®
¡àS¡÷QABµÄ×î´óÖµ=$\frac{1}{2}$|AB|h=$\frac{1}{2}¡Á\sqrt{5}$¡Á$£¨2+\frac{2\sqrt{5}}{5}£©$=$\sqrt{5}$+1£¬¡à¡÷QABÃæ»ýµÄ×î´óֵΪ$\sqrt{5}$+1£®
£¨III£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉµÃ£ºk¡Ù0£¬F$£¨\sqrt{3}£¬0£©$£¬N$£¨-\frac{m}{k}£¬0£©$£®
ÉèÇеãM£¨x0£¬y0£©£¬ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬»¯Îª£º£¨1+4k2£©x2+8kmx+4m2-4=0£¬
ÓÖÖ±ÏßlÓëÇúÏßC1ÏàÇÐÓÚµãM£¬¡à¡÷=£¨8km£©2-4£¨1+4k2£©£¨4m2-4£©=0£¬¼´m2=4k2+1£®
x0=$\frac{1}{2}¡Á$$£¨-\frac{8km}{1+4{k}^{2}}£©$=-$\frac{4km}{1+4{k}^{2}}$£¬y0=kx0+m=$\frac{m}{1+4{k}^{2}}$£¬
¡àM$£¨-\frac{4km}{1+4{k}^{2}}£¬\frac{m}{1+4{k}^{2}}£©$£¬¼´M$£¨-\frac{4k}{m}£¬\frac{1}{m}£©$£®¡àkOM=-$\frac{1}{4k}$£®
¡à$P£¨\frac{4\sqrt{3}}{3}£¬-\frac{\sqrt{3}}{3k}£©$£¬
¡à$\overrightarrow{FM}$=$£¨-\frac{4k}{m}-\sqrt{3}£¬\frac{1}{m}£©$=$\frac{1}{m}$$£¨-4k-\sqrt{3}m£¬1£©$£¬$\overrightarrow{NP}$=$£¨\frac{m}{k}+\frac{4\sqrt{3}}{3}£¬-\frac{\sqrt{3}}{3k}£©$=-$\frac{\sqrt{3}}{3k}$$£¨-4k-\sqrt{3}m£¬1£©$£¬
¡à$\overrightarrow{FM}$=-$\frac{\sqrt{3}k}{m}$$\overrightarrow{NP}$£¬¡àMF¡ÎPN£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÔ²ÏàÇÐÎÊÌâ¡¢Ö±ÏßÏཻÎÊÌâ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢Æ½ÐÐÏßÖ®¼äµÄ¾àÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®rn£¬nÊDz»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊDz»ÖØºÏµÄÆ½Ã棬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô¦Á¡Î¦Â£¬m?¦Á£¬n?¦Â£¬Ôòm¡În
B£®Èôm£¬n?¦Á£¬m¡Î¦Â£¬n¡Î¦Â£¬Ôò¦Á¡Î¦Â
C£®m£¬nÊÇÒìÃæÖ±Ïߣ¬Èôm¡Î¦Á£¬m¡Î¦Â£¬n¡Î¦Â£¬Ôò¦Á¡Î¦Â
D£®Èô¦Á¡Î¦Â£¬m¡Î¦Á£¬Ôòm¡Î¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª¶¯µãPÓëµãA£¨-$\sqrt{3}$£¬0£©ºÍµãB£¨$\sqrt{3}$£¬0£©Á¬½ÓµÄбÂÊÖ®»ýΪ-$\frac{2}{3}$£¬µãPµÄ¹ì¼£ÎªÇúÏßC£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£»
£¨2£©QΪÇúÏßCÉÏλÓÚxÖáÉÏ·½µÄ¶¯µã£¬Ö±ÏßAQ¡¢BQ·Ö±ð½»Ö±Ïßy=$\sqrt{3}$ÓÚµãM£¬N£¬Çó¡÷QMNÃæ»ýµÄ×îСֵ£»
£¨3£©ÈôÖ±Ïßl£ºmx+y+1=0ÓëÇúÏßC½»ÓÚD¡¢FÁ½µã£¬ÊÇ·ñ´æÔÚʵÊým£¬Ê¹|$\overrightarrow{OD}+\overrightarrow{OF}$|=|$\overrightarrow{OD}-\overrightarrow{OF}$|³ÉÁ¢£¿Èô´æÔÚ£¬ÇómµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÖÐÐÄÔÚ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬Ëü¹ýµã£¨0£¬1£©£¬ÀëÐÄÂÊΪ$\frac{2\sqrt{5}}{5}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¹ýÍÖÔ²CµÄ×ó½¹µãF×÷Ö±Ïßl½»ÍÖÔ²CÓÚG£¬HÁ½µã£¬½»yÖáÓÚµãM£¬Èô$\overrightarrow{MG}=m\overrightarrow{FG}$£¬$\overrightarrow{MH}$=n$\overrightarrow{FH}$£¬ÅжÏm+nÊÇ·ñΪ¶¨Öµ£¬ÈôΪ¶¨Öµ£¬ÇëÇó³ö¸Ã¶¨Öµ£¬Èô²»ÊÇÇë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÉèÍÖÔ²ÖÐÐÄÔÚÔ­µãO£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÍÖÔ²ÉÏÒ»µãPµ½Á½½¹µãµÄ¾àÀëÖ®ºÍµÈÓÚ$\sqrt{6}$£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©ÈôÖ±Ïßx+y+m=0½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇÒOA¡ÍOB£¬ÇóʵÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=$\frac{4x}{2+x}$£¬ÊýÁÐ{an}Âú×ãa1=f£¨1£©£¬an+1=f£¨an£©£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{$\frac{1}{{a}_{n}}$-$\frac{1}{2}$}ÊǵȱÈÊýÁУ»
£¨2£©²»µÈʽ$\frac{2}{{a}_{1}}$+$\frac{{2}^{2}}{{a}_{2}}$+¡­+$\frac{{2}^{n}}{{a}_{n}}$¡Ýt+$\frac{n}{2}$£¬n¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÔÚÈýÀâ×¶P-ABCÖУ¬ÒÑÖªPA¡Íµ×ÃæABC£¬AB¡ÍBC£¬E£¬F·Ö±ðÊÇÏß¶ÎPB£¬PCÉϵ͝µã£®ÔòÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®µ±AE¡ÍPBʱ£¬¡÷AEF-¶¨ÎªÖ±½ÇÈý½ÇÐÎ
B£®µ±AF¡ÍPCʱ£¬¡÷AEF-¶¨ÎªÖ±½ÇÈý½ÇÐÎ
C£®µ±EF¡ÎÆ½ÃæABCʱ£¬¡÷AEF-¶¨ÎªÖ±½ÇÈý½ÇÐÎ
D£®µ±PC¡ÍÆ½ÃæAEFʱ£¬¡÷AEF-¶¨ÎªÖ±½ÇÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Ö±Ïß3x+4y+1=0ÓëÔ²x2+y2-x+y=0ÏཻÓÚA¡¢B£¬ÔòABµÄ³¤¶ÈÊÇ$\frac{7}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚÁâÐÎABCDÖУ¬¶Ô½ÇÏßACÓëBDÏཻÓÚµãO£¬AB=5£¬AC=8£¨Èçͼ£©£®Èç¹ûµãEÔÚ¶Ô½ÇÏßACÉÏ£¬ÇÒDE=4£®
£¨1£©ÇóAEµÄ³¤£»
£¨2£©Éè$\overrightarrow{OA}$=$\overrightarrow{a}$£¬$\overrightarrow{OB}$=$\overrightarrow{b}$£¬$\overrightarrow{DE}$=$\overrightarrow{c}$£¬ÊÔÓÃÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$¡¢$\overrightarrow{c}$±íʾÏÂÁÐÏòÁ¿£º$\overrightarrow{BC}$£¬$\overrightarrow{AE}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸