·ÖÎö £¨I£©ÇúÏßC1¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¿ÉµÃ$\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}$=1£¬$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬ÓÖa2=b2+c2£¬ÁªÁ¢½âµÃa£¬b£¬¿ÉµÃÇúÏßC1µÄ·½³Ì£®¿ÉµÃA£¬µãAÔÚÇúÏßC2ÉÏ£¬¿ÉµÃr£®
£¨II£©A£¨-2£¬0£©£¬B£¨0£¬1£©£¬ÀûÓýؾàʽ¿ÉµÃÖ±ÏßABµÄ·½³Ì£®ÓÉÌâÒâ¿ÉÖª£ºµ±ÇúÏßC2ÔÚµãQ´¦µÄÇÐÏßÓëÖ±ÏßABƽÐÐʱ£¬¡÷QABµÄÃæ»ý×î´ó£¬ÉèÇÐÏß·½³ÌΪ£ºx-2y+t=0£¬ÓÉÖ±ÏßÓëÔ²ÏàÇеÄÐÔÖʿɵÃt£®ÀûÓÃÆ½ÐÐÏßÖ®¼äµÄ¾àÀ빫ʽ¿ÉµÃ¡÷QABµÄAB±ßÉϵĸßh£¬¼´¿ÉµÃ³öS¡÷QABµÄ×î´óÖµ=$\frac{1}{2}$|AB|h£®
£¨III£©ÓÉÌâÒâ¿ÉµÃ£ºk¡Ù0£¬F$£¨\sqrt{3}£¬0£©$£¬N$£¨-\frac{m}{k}£¬0£©$£®ÉèM£¨x0£¬y0£©£¬Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨1+4k2£©x2+8kmx+4m2-4=0£¬ÓÖÖ±ÏßlÓëÇúÏßC1ÏàÇÐÓÚµãM£¬¿ÉµÃ¡÷=0£¬¼´m2=4k2+1£®ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃM£¬kOM£¬µãPµÄ×ø±ê£®¿ÉµÃ$\overrightarrow{FM}$=¦Ë$\overrightarrow{NP}$£¬¼´¿ÉÖ¤Ã÷MF¡ÎPN£®
½â´ð £¨I£©½â£º¡ßÇúÏßC1¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬
¡à$\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}$=1£¬$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬ÓÖa2=b2+c2£¬ÁªÁ¢½âµÃa=2£¬b=1£¬
¿ÉµÃÇúÏßC1µÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}$+y2=1£¬£¨y¡Ý0£©£®
¿ÉµÃA£¨-2£¬0£©£¬¡ßµãAÔÚÇúÏßC2ÉÏ£¬¡àr=2£¬¿ÉµÃ·½³Ì£ºx2+y2=4£¨y£¼0£©£®
£¨II£©½â£ºA£¨-2£¬0£©£¬B£¨0£¬1£©£¬¿ÉµÃÖ±ÏßABµÄ·½³Ì£º$\frac{x}{-2}+\frac{y}{1}$=1£¬»¯Îª£ºx-2y+2=0£®
ÓÉÌâÒâ¿ÉÖª£ºµ±ÇúÏßC2ÔÚµãQ´¦µÄÇÐÏßÓëÖ±ÏßABƽÐÐʱ£¬¡÷QABµÄÃæ»ý×î´ó£¬
ÉèÇÐÏß·½³ÌΪ£ºx-2y+t=0£¬ÓÉÖ±ÏßÔ²ÏàÇеÄÐÔÖʿɵãº$\frac{|t|}{\sqrt{5}}$=2£¬ÓÉ¿ÉÖªt£¼0£¬½âµÃt=-2$\sqrt{5}$£®
´Ëʱ¡÷QABµÄAB±ßÉϵĸßh=$\frac{|2-£¨-2\sqrt{5}£©|}{\sqrt{5}}$=2+$\frac{2\sqrt{5}}{5}$£®
¡àS¡÷QABµÄ×î´óÖµ=$\frac{1}{2}$|AB|h=$\frac{1}{2}¡Á\sqrt{5}$¡Á$£¨2+\frac{2\sqrt{5}}{5}£©$=$\sqrt{5}$+1£¬¡à¡÷QABÃæ»ýµÄ×î´óֵΪ$\sqrt{5}$+1£®
£¨III£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉµÃ£ºk¡Ù0£¬F$£¨\sqrt{3}£¬0£©$£¬N$£¨-\frac{m}{k}£¬0£©$£®
ÉèÇеãM£¨x0£¬y0£©£¬ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬»¯Îª£º£¨1+4k2£©x2+8kmx+4m2-4=0£¬
ÓÖÖ±ÏßlÓëÇúÏßC1ÏàÇÐÓÚµãM£¬¡à¡÷=£¨8km£©2-4£¨1+4k2£©£¨4m2-4£©=0£¬¼´m2=4k2+1£®
x0=$\frac{1}{2}¡Á$$£¨-\frac{8km}{1+4{k}^{2}}£©$=-$\frac{4km}{1+4{k}^{2}}$£¬y0=kx0+m=$\frac{m}{1+4{k}^{2}}$£¬
¡àM$£¨-\frac{4km}{1+4{k}^{2}}£¬\frac{m}{1+4{k}^{2}}£©$£¬¼´M$£¨-\frac{4k}{m}£¬\frac{1}{m}£©$£®¡àkOM=-$\frac{1}{4k}$£®
¡à$P£¨\frac{4\sqrt{3}}{3}£¬-\frac{\sqrt{3}}{3k}£©$£¬
¡à$\overrightarrow{FM}$=$£¨-\frac{4k}{m}-\sqrt{3}£¬\frac{1}{m}£©$=$\frac{1}{m}$$£¨-4k-\sqrt{3}m£¬1£©$£¬$\overrightarrow{NP}$=$£¨\frac{m}{k}+\frac{4\sqrt{3}}{3}£¬-\frac{\sqrt{3}}{3k}£©$=-$\frac{\sqrt{3}}{3k}$$£¨-4k-\sqrt{3}m£¬1£©$£¬
¡à$\overrightarrow{FM}$=-$\frac{\sqrt{3}k}{m}$$\overrightarrow{NP}$£¬¡àMF¡ÎPN£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÔ²ÏàÇÐÎÊÌâ¡¢Ö±ÏßÏཻÎÊÌâ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢Æ½ÐÐÏßÖ®¼äµÄ¾àÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Èô¦Á¡Î¦Â£¬m?¦Á£¬n?¦Â£¬Ôòm¡În | |
| B£® | Èôm£¬n?¦Á£¬m¡Î¦Â£¬n¡Î¦Â£¬Ôò¦Á¡Î¦Â | |
| C£® | m£¬nÊÇÒìÃæÖ±Ïߣ¬Èôm¡Î¦Á£¬m¡Î¦Â£¬n¡Î¦Â£¬Ôò¦Á¡Î¦Â | |
| D£® | Èô¦Á¡Î¦Â£¬m¡Î¦Á£¬Ôòm¡Î¦Â |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µ±AE¡ÍPBʱ£¬¡÷AEF-¶¨ÎªÖ±½ÇÈý½ÇÐÎ | |
| B£® | µ±AF¡ÍPCʱ£¬¡÷AEF-¶¨ÎªÖ±½ÇÈý½ÇÐÎ | |
| C£® | µ±EF¡ÎÆ½ÃæABCʱ£¬¡÷AEF-¶¨ÎªÖ±½ÇÈý½ÇÐÎ | |
| D£® | µ±PC¡ÍÆ½ÃæAEFʱ£¬¡÷AEF-¶¨ÎªÖ±½ÇÈý½ÇÐÎ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com