| A. | 当AE⊥PB时,△AEF-定为直角三角形 | |
| B. | 当AF⊥PC时,△AEF-定为直角三角形 | |
| C. | 当EF∥平面ABC时,△AEF-定为直角三角形 | |
| D. | 当PC⊥平面AEF时,△AEF-定为直角三角形 |
分析 A.当AE⊥PB时,又PA⊥底面ABC,AB⊥BC,可得AE⊥BC,利用线面垂直的判定与性质定理可得AE⊥EF,即可判断出正误.
B.当AF⊥PC时,无法得出△AEF-定为直角三角形,即可判断出正误;
C.当EF∥平面ABC时,可得EF∥BC,利用线面垂直的判定与性质定理可得:BC⊥AE,EF⊥AE,即可判断出正误;
D.当PC⊥平面AEF时,可得PC⊥AE,由C可知:BC⊥AE利用线面垂直的判定与性质定理即可判断出正误.
解答 解:A.当AE⊥PB时,又PA⊥底面ABC,AB⊥BC,∴AE⊥BC,可得:AE⊥平面PBC,∴AE⊥EF,∴△AEF-定为直角三角形,正确.
B.当AF⊥PC时,无法得出△AEF-定为直角三角形,因此不正确;
C.当EF∥平面ABC时,平面PBC∩ABC=BC,可得EF∥BC,∵PA⊥底面ABC,AB⊥BC,∴BC⊥平面PAB,∴BC⊥AE,因此EF⊥AE,则△AEF-定为直角三角形,正确;
D.当PC⊥平面AEF时,可得PC⊥AE,由C可知:BC⊥AE,∴AE⊥平面PBC,∴AE⊥EF,因此△AEF-定为直角三角形,正确.
故选:B.
点评 本题考查了线面垂直的判定与性质定理、直角三角形的定义,考查了空间想象能力、推理能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{4}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com