精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=$\left\{\begin{array}{l}{1,x=1}\\{lo{g}_{a}|x-1|+1,x≠1}\end{array}\right.$若函数g(x)=[f(x)]2+bf(x)+c有三个零点x1,x2,x3,则x1x2+x2x3+x1x3等于2.

分析 题中原方程f2(x)+bf(x)+c=0有且只有3个不同实数解,即要求对应于f(x)=某个常数有3个不同实数解,由题意,只有当f(x)=1时,它有三个根.故关于x的方程f2(x)+bf(x)+c=0有且只有3个不同实数解,即解分别是0,1,2,从而问题解决.

解答 解:由题意,只有当f(x)=1时,它有三个根.
故关于x的方程f2(x)+bf(x)+c=0有且只有3个不同实数解,
即解分别是0,1,2.
故则x1x2+x2x3+x1x3=0+2+0=2.
故答案为2.

点评 本题主要考查了根的存在性及根的个数判断,考查学生分析解决问题的能力,确定只有当f(x)=1时,它有三个根是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知|$\overrightarrow a$|=2,|$\overrightarrow b$|=3,$\overrightarrow a$与$\overrightarrow b$的夹角为60o,$\overrightarrow c$=5$\overrightarrow a$+3$\overrightarrow b$,$\overrightarrow d$=3$\overrightarrow a$+k$\overrightarrow b$,$\overrightarrow c$⊥$\overrightarrow d$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|x2+2x=0},B={x|x2+2(a-1)x+a2-1=0}.
(1)若A∩B≠∅,求实数a的值;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O为坐标原点,向量$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$,$\overrightarrow{OC}$=$\overrightarrow c$且点A、B、C在曲线x2+y2=1上运动,若$\overrightarrow a$⊥$\overrightarrow b$,则($\overrightarrow a$-$\overrightarrow c$)•($\overrightarrow b$-$\overrightarrow c$)的最小值为(  )
A.-1B.-2C.1-$\sqrt{2}$D.$\sqrt{2}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=log2(4x+1)-x,g(x)=log2a+log2(2x-$\frac{4}{3}$)(a>0,x>1).
(1)证明函数f(x)为偶函数;
(2)若函数f(x)-g(x)只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=loga(ax2-x+3)(0<a<1)在[2,4]上是增函数,则实数a的取值范围是$\frac{1}{16}<a≤\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1,过它的焦点且垂直于x轴上的弦长是$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数g(x)=f(x)+2x,x∈R为奇函数.
(1)判断函数f(x)的奇偶性;
(2)若x>0时,f(x)=log3x,求函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|4x-1|<9,x∈R},B={x|$\frac{x}{x+3}$≥0,x∈R},则(∁RA)∩B=(  )
A.(-∞,-3)∪[$\frac{5}{2}$,+∞)B.(-3,-2]∪[0,$\frac{5}{2}$)C.(-∞,-3]∪[$\frac{5}{2}$,+∞)D.(-3,-2]

查看答案和解析>>

同步练习册答案