精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinx,
3
-
3
cos2x),
b
=(2cosx,1),定义f(x)=
a
b

(1)求函数y=f(x),x∈R的单调递减区间;
(2)若函数y=f(x+θ)(0<θ<
π
2
)为偶函数,求θ的值.
考点:平面向量数量积的运算,三角函数中的恒等变换应用
专题:平面向量及应用
分析:(1)利用向量的数量积先求出f(x)的解析式,再根据正弦函数的单调性,求出函数的单调区间,
(2)先求出f(x+θ)的解析式,再根据偶函数的性质求出x的值,再根据函数的极值求得θ的值.
解答: 解:(1)f(x)=
a
b
=(sinx,
3
-
3
cos2x)•(2cosx,1)
=2sinxcosx+
3
-
3
cos2x=sin2x-
3
cos2x+
3

=2sin(2x-
π
3
)+
3

由2kπ+
π
2
<2x-
π
3
<2kπ+
2
 (k∈Z),
得kπ+
12
<x<kπ+
11π
12

所以所求单调递减区间为(kπ+
12
,kπ+
11π
12
),(k∈Z),
(2)∵y=f(x+θ)=2sin(2x+2θ-
π
3
)+
3
为偶函数,
∴2θ-
π
3
=kπ+
π
2
 (k∈Z),
即θ=
2
+
12

又0<θ<
π
2

所以θ=
12
点评:本题主要考查了向量的数量积的运算和三角函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正四面体的内切球与外接球的半径之比为(  )
A、1:3B、1:9
C、1:27D、1:81

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c(x∈[-1,2]),且函数f(x)在x=1和x=-
2
3
处都取得极值.
(1)求a,b的值;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+clnx(其中a,b,c为实常数)
(1)当b=0,c=1时,讨论f(x)的单调区间;
(2)曲线y=f(x)(其中a>0)在点(1,f(1))处的切线方程为y=3x-3
①若函数f(x)无极值点且方程f′(x)=0有解,求a,b,c的值;
②若函数f(x)有两个极值点,证明f(x)的极值点小于-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-4,e]上的函数,f(x)=
|lnx|,0<x≤e
x2+2x-2,-4≤x≤0

(1)在坐标系上画出f(x)的图象
(2)写出f(x)的单调增区间
(3)若m=f(x)有两解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a>0时,求函数f(x)的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
x2+1
(a>0)
(1)若函数f(x)的极大值为2,极小值为-2,试求a,b的值;
(2)在(1)的条件下,若函数g(x)=k(x-
1
3
),试讨论函数F(x)=f(x)-g(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ax+1)+
2
x+1
-1(x≥0,a>0).
(1)若f(x)在x=1处取得极值,求a的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+1)+ax2-x,a∈R.
(Ⅰ)当a=
1
4
时,求函数y=f(x)的极值;
(Ⅱ)是否存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b)?若存在,求实数a的取值范围,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案