【题目】如图,在平行四边形
中,
,
,
,四边形
为矩形,平面
平面
,
,点
在线段
上运动,且
.
![]()
(1)当
时,求异面直线
与
所成角的大小;
(2)设平面
与平面
所成二面角的大小为
(
),求
的取值范围.
科目:高中数学 来源: 题型:
【题目】某高校在
年的自主招生考试成绩中随机抽取
名学生的笔试成绩,按成绩分组:第
组
,第
组
,第
组
,第
组
,第
组
得到的频率分布直方图如图所示
![]()
分别求第
组的频率;
若该校决定在第
组中用分层抽样的方法抽取
名学生进入第二轮面试,
已知学生甲和学生乙的成绩均在第
组,求学生甲和学生乙同时进入第二轮面试的概率;
根据直方图试估计这
名学生成绩的平均分.(同一组中的数据用改组区间的中间值代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在
轴上的抛物线
过点
,椭圆
的两个焦点分别为
,
,其中
与
的焦点重合,过点
与
的长轴垂直的直线交
于
,
两点,且
,曲线
是以坐标原点
为圆心,以
为半径的圆.
(1)求
与
的标准方程;
(2)若动直线
与
相切,且与
交于
,
两点,求
的面积
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,右焦点为
,左顶点为A,右顶点B在直线
上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C上异于A,B的点,直线
交直线
于点
,当点
运动时,判断以
为直径的圆与直线PF的位置关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放以来,伴随着我国经济持续增长,户均家庭教育投入
户均家庭教育投入是指一个家庭对家庭成员教育投入的总和
也在不断提高
我国某地区2012年至2018年户均家庭教育投入
单位:千元
的数据如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
户均家庭教育投入y |
|
|
|
|
|
|
|
求y关于t的线性回归方程;
利用
中的回归方程,分析2012年至2018年该地区户均家庭教育投入的变化情况,并预测2019年该地区户均家庭教育投入是多少.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:
![]()
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间
(单位:小时)并绘制如图所示的频率分布直方图.
![]()
(1)求这200名学生每周阅读时间的样本平均数
和样本方差
(同一组中的数据用该组区间的中间值代表);
(2)由直方图可以认为,目前该校学生每周的阅读时间
服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若
,令
,则
,且
.利用直方图得到的正态分布,求
.
(ii)从该高校的学生中随机抽取20名,记
表示这20名学生中每周阅读时间超过10小时的人数,求
(结果精确到0.0001)以及
的数学期望.
参考数据:
,
.若
,则
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
(t为参数).
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换
得到曲线,设M(x,y)为
上任意一点,求
的最小值,并求相应的点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com