精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).

(1)写出直线l的普通方程与曲线C的直角坐标方程;

(2)设曲线C经过伸缩变换得到曲线,设M(x,y)为上任意一点,求的最小值,并求相应的点M的坐标.

【答案】(1) ;(2)当M时原式取得最小值1.

【解析】试题分析:(1)将直线中的参数消去,即可得到其普通方程,在极坐标方程两边平方,由替换即可得到圆的直角坐标方程.(2)由变换公式先写出变换后的方程为一椭圆,用椭圆的参数方程表示点代入,由三角函数知识求之即可.

试题解析:(1)由,得,代入

得直线的普通方程

,得

2的直角坐标方程为

,则

,即,上式取最小值

即当的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足为等比数列,且

1)求

2)设,记数列的前项和为

①求

②求正整数 k,使得对任意均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义平面向量之间的一种运算“⊙”如下:对任意的 ,令 ,下面说法错误的是(
A.若 共线,则 =0
B. =
C.对任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,圆的直角坐标方程为,直线的参数方程为为参数),射线的极坐标方程为

1)求圆和直线的极坐标方程;

(2)已知射线与圆的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):

轿车

轿车

轿车

舒适型

100

150

标准型

300

450

600

按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.

(I)求的值;

(II)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;

(III)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分的值如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,设样本平均数为,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +
(1)将函数f(x)化简成Asin(ωx+φ)+B(A>0,φ>0,φ∈[0,2π))的形式;
(2)求f(x)的单调递减区间,并指出函数|f(x)|的最小正周期;
(3)求函数f(x)在[ ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A=30°,BC=2 ,D是AB边上的一点,CD=2,△BCD的面积为4,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用简单随机抽样从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图所示.在这些用户中,用电量落在区间[150,250]内的户数为(

A.46
B.48
C.50
D.52

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

1)求不等式的解集

2)若,求证: .

查看答案和解析>>

同步练习册答案