分析 (1)以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点E在椭圆C上.可得|EF1|+|EF2|=3+1=2a,解得a=2.又e=$\frac{c}{a}$=$\frac{1}{2}$,a2=b2+c2,解得c,b2,即可得到椭圆C的方程;
(2)①直线l1:x=1,直线l2:x=4.把x=1代入直线1,解得y,可得M坐标.同理可得N坐标.又${y}_{0}^{2}$=$\frac{3(4-{x}_{0}^{2})}{4}$,利用两点之间的距离公式可得$\frac{M{F}_{2}}{N{F}_{2}}$=$\frac{1}{2}$为定值.
②由由$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1$,解得${y}_{0}^{2}$=$\frac{3(4-{x}_{0}^{2})}{4}$.直线l1的方程为:x=1;直线l2的方程为:x=4.直线PF1的方程为:y-0=$\frac{{y}_{0}}{{x}_{0}+1}$(x+1),由于-1<x0<2,可得$\frac{1}{{x}_{0}+1}$∈($\frac{1}{3}$,+∞),即可得出k1k2,利用函数的性质即可得出.
解答 解:(1)由题意知2a=4,则a=2,
由e=$\frac{c}{a}$=$\frac{1}{2}$,求得c=1,
b2=a2-c2=3
∴椭圆C的标准方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.;
(2)①证明:直线l1:x=1,直线l2:x=4.
把x=1代入直线1:$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1,解得y=$\frac{3(4-{x}_{0})}{4}$,
∴M$({1,\frac{{3({x_0}-4)}}{{4{y_0}}}})$,
把x=4代入直线1:$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1方程,解得y=$\frac{3(1-{x}_{0})}{{y}_{0}}$,
∴N$({4,\frac{{3{x_0}-3}}{y_0}})$,
∴$\frac{{M{F_2}}}{{N{F_2}}}=\frac{{3|{\frac{{{x_0}-4}}{{4{y_0}}}}|}}{{\sqrt{{{({\frac{{3{x_0}-3}}{y_0}})}^2}+9}}}=\frac{{|{{x_0}-4}|}}{{4\sqrt{{{({{x_0}-1})}^2}+{y_0}^2}}}=\frac{{|{{x_0}-4}|}}{{2\sqrt{{x_0}^2-8{x_0}+16}}}=\frac{1}{2}$
②由$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1$,解得${y}_{0}^{2}$=3(1-$\frac{{x}_{0}^{2}}{4}$)(-2≤x0<2),x0≠-1.
直线l1的方程为:x=1;直线l2的方程为:x=4.
直线PF1的方程为:y-0=$\frac{{y}_{0}}{{x}_{0}+1}$(x+1),
令x=4,可得yQ═$\frac{5{y}_{0}}{{x}_{0}+1}$.
点Q$(4,\frac{{5{y_0}}}{{{x_0}+1}})$,
∵${k_1}=\frac{y_0}{{{x_0}-2}}$,k2=$\frac{5{y}_{0}}{{2(x}_{0}+1)}$,
∴k1•k2=$\frac{y_0}{{{x_0}-2}}×\frac{{5{y_0}}}{{2({x_0}+1)}}$=$\frac{5{y}_{0}^{2}}{2({x}_{0}+1)({x}_{0}-2)}$.
∵点P在椭圆C上,∴$\frac{{{x_0}^2}}{4}+\frac{{{y_0}^2}}{3}=1$,
∴k1•k2=$-\frac{15}{8}×\frac{{{x_0}+2}}{{{x_0}+1}}$=$-\frac{15}{8}×(1+\frac{1}{{{x_0}+1}})$.
∵-1<x0<2,
∴$\frac{1}{{x}_{0}+1}$∈($\frac{1}{3}$,+∞),
∴k1•k2<-$\frac{5}{2}$.
∴k1•k2的取值范围是k1k2∈(-∞,-$\frac{5}{2}$).
点评 本题考查了椭圆的标准方程及其性质、圆的方程、直线与椭圆相交问题、斜率计算公式、两点之间的距离公式,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 7 | C. | $2\sqrt{2}$ | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 月收入2000元以下 | 月收入2000元及以上 | 总计 | |
| 高中文化以上 | 10 | 45 | 55 |
| 高中文化及以下 | 20 | 30 | 50 |
| 总计 | 30 | 75 | 105 |
| P(K2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分且必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com