精英家教网 > 高中数学 > 题目详情
若定义在R上的奇函数y=f(x),满足f(x+1)=f(1-x),则周期为
 
考点:函数的周期性
专题:函数的性质及应用
分析:在给出的等式中以x+1替换x,借助于函数是奇函数求得函数的周期.
解答: 解:由f(x+1)=f(1-x),且f(x)为奇函数,得
f(x+1+1)=f(1-x-1)=f(-x)=-f(x),
即f(x+2)=-f(x),
则f(x+4)=-f(x+2)=-[-f(x)]=f(x).
∴f(x)的周期为4.
故答案为:4.
点评:本题考查了函数奇偶性的性质,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,一个四面体S-ABC的六条棱长都为4,E为SA的中点,过点E作平面EFH∥平面SBC.且平面EFH∩平面ABC=FH,则△HFE面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=-
1
2
x+1,试求:
(1)点P(-2,-1)关于直线l的对称点坐标;
(2)直线l1:y=x-2关于直线l对称的直线l2的方程;
(3)直线l关于点A(1,1)对称的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

动点P到x轴,y轴的距离之比等于非零常数k,则动点P的轨迹方程是(  )
A、y=
x
k
(x≠0)
B、y=kx(x≠0)
C、y=-
x
k
(x≠0)
D、y=±kx(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差不为零的等差数列,a1=1,且a1,a2,a4成等比数列;
(Ⅰ)求通项an
(Ⅱ)令bn=an+2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-sin(2ωx-
π
2
)(ω>0)的图象的一个对称中心到最近的对称轴的距离为
π
4

(1)求ω的值;
(2)求f(x)在区间[π,
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式loga[a2x-2x(ax+2x+1)+1]>0(其中常数a>1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,n为正整数,对任意的n≥2都有an+2anan-1-an-1=0成立.
(1)求证:数列{
1
an
}
为等差数列;并求{an}的通项公式;
(2)判断a3•a6是否为数列{an}中的项,如果是,是第几项?如果不是,说明理由;
(3)设cn=an•an+1(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ<
π
2
)的一段图象.
(1)求f(x)的解析式;
(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合.

查看答案和解析>>

同步练习册答案