精英家教网 > 高中数学 > 题目详情
已知椭圆+=1的两个焦点是F1、F2,点P在该椭圆上,若|PF1|-|PF2|=2,则△PF1F2的面积是    .
由椭圆方程+=1可知c=,a=2,
∴|PF1|+|PF2|=4.
又|PF1|-|PF2|=2,
∴|PF1|=3,|PF2|=1.
又|F1F2|=2,
∴|PF1|2=|PF2|2+|F1F2|2,
∴PF2⊥F1F2,
=|PF2||F1F2|
=×1×2
=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆C:  +=1(a>b>0)的离心率e=,a+b=3.

(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明2m-k为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足PF1=2PF2,∠PF1F2=30°,则椭圆的离心率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,是椭圆长轴的一个端点,是椭圆短轴的一个端点,为椭圆的一个焦点.若,则该椭圆的离心率为 (  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,中心均为原点O的双曲线与椭圆有公共焦点,M、N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是(  )
A.3B.2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆+y2=1的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A、B两点,且=3,则C的方程为(  )
(A) +y2=1      (B) +=1
(C) +=1     (D) +=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是双曲线右支上的一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为( )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个同心圆,其半径分别为为小圆上的一条定直径,则以大圆的切线为准线,且过两点的抛物线焦点的轨迹方程为(      )(以线段所在直线为轴,其中垂线为轴建立平面直角坐标系)
A.B.
C.D.

查看答案和解析>>

同步练习册答案