精英家教网 > 高中数学 > 题目详情
(本题满分14分)
如图,四棱锥P—ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(Ⅰ)求证:BE//平面PAD;
(Ⅱ)若BE⊥平面PCD。
(i)求异面直线PD与BC所成角的余弦值;
(ii)求二面角E—BD—C的余弦值.
(Ⅰ)略
(Ⅱ)(i)异面直线所成角的余弦值为
(ii)二面角的余弦值为
,建立如图的空间坐标系,
,
.……………………………………2分
(Ⅰ)
所以,  
平面平面. ……………………………………4分
(Ⅱ)平面,即
,即.…………………6分


所以异面直线所成角的余弦值为……………………………10分
②平面和平面中,
所以平面的一个法向量为
平面的一个法向量为;……………………………………12分
,所以二面角的余弦值为…………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图四棱锥P-ABCD中,底面ABCD为矩形,PA底面ABCD,PA=AB=,点E是棱PB的中点。(1)求直线AD与平面PBC的距离。
(2)若AD=,求二面角A-EC-D的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长都相等的正三棱柱中,分别为的中点.
⑴求证:
⑵求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA="A" B.
(Ⅰ)求证:PC⊥平面BDE;
(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;
(Ⅲ)求线段PA上点Q的位置,使得PC//平面BDQ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,已知△是正三角形,平面的中点,在棱上,且
(1)求证:平面
(2)求平面与平面所成的锐二面角的余弦值;
(3)若的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面ABCD为菱形,底面的中点,的中点,求证:
(1)平面
(2).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(9分)如图,在四棱锥PABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCDAB=,BC=1,PA=2,EPD的中点.
(1)求直线BE与平面ABCD所成角的正切值;
(2)在侧面PAB内找一点N,使NE⊥面PAC
并求出N点到ABAP的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

选修4-1:几何证明选讲
如图,已知是⊙的切线, 为切点,是⊙O的割线,与⊙交于 两点,圆心的内部,点的中点.
(1)求证:四点共圆;
(2)求的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m、n为两不重合直线,α、β是两平面,给出下列命题:
① 若n//m,m⊥β,则n⊥β;   ② 若n⊥β,α⊥β,则n//α;
③ 若n//α,α⊥β,则n⊥β;  ④ 
其中真命题的有(    )个。                             (   )
A.1     B.2  C.3 D.4

查看答案和解析>>

同步练习册答案