精英家教网 > 高中数学 > 题目详情
7.已知f(x)=$\frac{1}{2013}$+log2$\frac{x}{1-x}$,则f$({\frac{1}{2014}})$+f$({\frac{2}{2014}})$+…+f$({\frac{2013}{2014}})$的值为(  )
A.1B.2C.2 013D.2 014

分析 由已知中f(x)=$\frac{1}{2013}$+log2$\frac{x}{1-x}$,可得f(x)+f(1-x)=$\frac{2}{2013}$,进而利用倒序相加法,可得答案.

解答 解:∵f(x)=$\frac{1}{2013}$+log2$\frac{x}{1-x}$,
∴f(1-x)=$\frac{1}{2013}$+log2$\frac{1-x}{1-(1-x)}$=$\frac{1}{2013}$+log2$\frac{1-x}{x}$=$\frac{1}{2013}$-log2$\frac{x}{1-x}$,
则f(x)+f(1-x)=$\frac{2}{2013}$,
令S=f$({\frac{1}{2014}})$+f$({\frac{2}{2014}})$+…+f$({\frac{2013}{2014}})$,
则2S=2013×$\frac{2}{2013}$=2,
解得:S=1,
故选:A

点评 本题考查的知识点是函数求值,其中分析出f(x)+f(1-x)=$\frac{2}{2013}$是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,函数y=2sin($\frac{π}{2}$x+φ)  x∈R,其中0≤φ≤$\frac{π}{2}$的图象与y轴交于点(0,1).
(Ⅰ)求φ的值;
(Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求$\overrightarrow{PM}$和$\overrightarrow{PN}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=ex+x2+2x+1的图象上任意点P到直线3x-y-2=0的距离的最小值为(  )
A.$\frac{{\sqrt{10}}}{5}$B.$\frac{{3\sqrt{10}}}{20}$C.$\frac{{3\sqrt{10}}}{10}$D.$\frac{{2\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x2-4=0},B={x|-1<x<3},则A∩B=(  )
A.{-2,2}B.(2,3)C.{2}D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={0,1},B={-1,0,2a-1},若A⊆B,则a的值为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.利用随机模拟方法计算y=x2+1与y=5围成的面积时,先利用计算器产生两组0~1之间的均匀随机数a1=RAND,b1=RAND,然后进行平移与伸缩变换a=4a1-2,b=4b1+1,实验进行了1000次,前998次中落在所求面积区域内的样本点数为624,若最后两次实验产生的0~1之间的均匀随机数为(0.3,0.1),(0.9,0.7),则本次模拟得到的面积的估计值是(  )
A.10B.$\frac{25}{2}$C.$\frac{1248}{125}$D.$\frac{1252}{125}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知α∈(0,π),sinα+cosα=$\frac{1}{5}$.
(Ⅰ) 求sinα-cosα的值;
(Ⅱ) 求sin(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a,b∈(1,+∞),则ab+1与a+b的大小关系是(  )
A.ab+1>a+bB.ab+1<a+bC.ab+1≥a+bD.ab+1≤a+b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p1:函数f(x)=|2x-1|的减区间为(-∞,0),命题p2:若函数g(x)=ax2+2x+a在x∈(2,+∞)上为增函数,则a≤-1或a≥0,则下列命题中真命题是(  )
A.p1∧p2B.¬p1∨p2C.p1∧¬p2D.¬p1∧¬p2

查看答案和解析>>

同步练习册答案