精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(2x+∅)(-π<φ<0),y=f(x)图象的一条对称轴是直线
(I)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.
(II)求函数y=f(x)的单调增区间;
(III)画出函数y=f(x)在区间[0,π]上的图象.

【答案】分析:(I)由图象的一条对称轴是直线,从而可得,解的∅,根据平移法则判断平移量及平移方向
(II)令,解x的范围即为所要找的单调增区间
(III)利用“五点作图法”做出函数的图象
解答:解:(Ⅰ)∵x=是函数y=f(x)的图象的对称轴,

,k∈Z.

由y=sin2x向右平移得到.(4分)

(Ⅱ)由(Ⅰ)知ϕ=-,因此y=
由题意得,k∈Z.
所以函数的单调增区间为,k∈Z.(3分)
(Ⅲ)由

故函数y=f(x)在区间[0,π]上图象是
(4分)
点评:本题主要考查了三角函数yAsin(wx+∅)的对称性:在对称轴处取得函数的最值,图象的平移法则:“左加右减”,单调性、五点作图法的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2π+?)(-π<?<0),y=f(x)图象的一条对称轴是直线x=
π8

(Ⅰ)求?;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π8

(1)求φ;
(2)怎样由函数y=sin x的图象变换得到函数f(x)的图象,试叙述这一过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g (x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:
①它的图象关于直线x=
π
12
对称;        
②它的周期为π;
③它的图象关于点(
π
3
,0)对称;      
④在区间[-
π
6
,0]上是增函数.
以其中两个论断作为条件,余下两个论断作为结论,写出你认为正确的两个命题:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步练习册答案