精英家教网 > 高中数学 > 题目详情

已知函数.
(1)若,则满足什么条件时,曲线处总有相同的切线?
(2)当时,求函数的单调减区间;
(3)当时,若对任意的恒成立,求的取值的集合.

(1),(2)当时,函数的减区间为
时,函数的减区间为;当时,函数的减区间为,(3).

解析试题分析:(1)根据导数几何意义分别求出曲线处的切线斜率,再根据两者相等得到满足的条件,易错点不要忽视列出题中已知条件,(2)求函数的单调减区间,一是求出函数的导数,二是判断对应区间的导数值符号.本题难点在于导数为零时根的大小不确定,需根据根的大小关系分别讨论单调减区间情况,尤其不能忽视两根相等的情况,(3)本题恒成立转化为函数最小值不小于零,难点是求函数的最小值时须分类讨论,且每类否定的方法为举例说明.另外,本题易想到用变量分离法,但会面临问题,而这需要高等数学知识.
试题解析:(1),又
处的切线方程为,          2分
,又处的切线方程为
所以当时,曲线处总有相同的切线     4分
(2)由
,         7分
,得
时,函数的减区间为
时,函数的减区间为
时,函数的减区间为.      10分
(3)由,则
①当时,,函数单调递增,
 时,,与函数矛盾,   12分
②当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax3x2cxd(acd∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求acd的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数
(1)当时,求内的极大值;
(2)设函数,当有两个极值点时,总有,求实数的值.(其中的导函数.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(Ⅰ)求函数单调递增区间;
(Ⅱ)当时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)若函数有两个极值点,且,求证:;
(Ⅲ)设,对于任意时,总存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)证明函数在区间上单调递减;
(2)若不等式对任意的都成立,(其中是自然对数的底数),求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数).
(1)求函数上的单调区间;
(2)设函数,是否存在区间,使得当时函数的值域为,若存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)求的极值点;
(Ⅱ)当时,若方程上有两个实数解,求实数t的取值范围;
(Ⅲ)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于 [1,2], [0,1],使成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案