精英家教网 > 高中数学 > 题目详情
18.△ABC中,AB=3,AC=4,BC=$\sqrt{13}$,则△ABC的面积是$3\sqrt{3}$.

分析 由已知及余弦定理可求cosA,利用同角三角函数基本关系式可求sinA的值,进而利用三角形面积公式即可得解.

解答 解:∵AB=3,AC=4,BC=$\sqrt{13}$,
∴cosA=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}$=$\frac{{3}^{2}+{4}^{2}-(\sqrt{13})^{2}}{2×3×4}$=$\frac{1}{2}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{3}}{2}$,
∴S△ABC=$\frac{1}{2}$AB•AC•sinA=$\frac{1}{2}×3×4×\frac{\sqrt{3}}{2}$=$3\sqrt{3}$.
故答案为:$3\sqrt{3}$.

点评 本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数y=a|x|(0<a<1)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)是R上的偶函数,且在(-∞,0)上为增函数,若x1<0,且x1+x2>0,则(  )
A.f(x1)=f(x2B.f(x1)>f(x2
C.f(x1)<f(x2D.无法比较f(x1)与f(x2)的大小

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\frac{1}{ln(x-1)}$的定义域为(1,2)∪(2,+∞),值域为(-∞,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)=$\frac{x}{{e}^{x-1}}$,g(x)=ax+3-3a(a>0),若对于任意x1∈[0,2],总存在x0∈[0,2],使得g(x0)=f(x1)成立,则a的取值范围是(  )
A.[2,+∞)B.[1,2]C.[0,2]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\sqrt{1-lg(x-1)}$的定义域为(  )
A.(-∞,11)B.(1,11]C.(1,11)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列集合中,是集合A={x|x2<5x}的真子集的是(  )
A.{2,5}B.(6,+∞)C.(0,5)D.(1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=$\frac{(x+3)(x+m)}{x}$为奇函数,则m=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=max{x2-ax+a,ax-a+1},其中max{x,y}=$\left\{\begin{array}{l}{y,x≤y}\\{x,x>y}\end{array}\right.$.
(Ⅰ)若对任意x∈R,恒有f(x)=x2-ax+a,求实数a的值;
(Ⅱ)若a>1,求f(x)的最小值m(a).

查看答案和解析>>

同步练习册答案