| A. | 10 | B. | 8 | C. | 5 | D. | 1 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答
解:由z=x+3y,得$y=-\frac{1}{3}x+\frac{z}{3}$,作出不等式对应的可行域,
平移直线$y=-\frac{1}{3}x+\frac{z}{3}$,由平移可知当直线$y=-\frac{1}{3}x+\frac{z}{3}$,经过点A时,
直线$y=-\frac{1}{3}x+\frac{z}{3}$,的截距最大,此时z取得最大值,
由$\left\{\begin{array}{l}{x=1}\\{2x+y=5}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
代入z=x+3y,得z=1+3×3=10,
即目标函数z=x+3y的最大值为10.
故选:A.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | (-2,1) | C. | (3,4) | D. | (4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2≤x≤2} | B. | {x|x≥2} | C. | {x|0≤x≤2} | D. | ∅ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com