精英家教网 > 高中数学 > 题目详情
4.已知实数x,y满足$\left\{\begin{array}{l}{x-y≤1}\\{2x+y≤5}\\{x≥1}\end{array}\right.$,则函数z=x+3y的最大值为(  )
A.10B.8C.5D.1

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.

解答 解:由z=x+3y,得$y=-\frac{1}{3}x+\frac{z}{3}$,作出不等式对应的可行域,
平移直线$y=-\frac{1}{3}x+\frac{z}{3}$,由平移可知当直线$y=-\frac{1}{3}x+\frac{z}{3}$,经过点A时,
直线$y=-\frac{1}{3}x+\frac{z}{3}$,的截距最大,此时z取得最大值,
由$\left\{\begin{array}{l}{x=1}\\{2x+y=5}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
代入z=x+3y,得z=1+3×3=10,
即目标函数z=x+3y的最大值为10.
故选:A.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=ex(x2+ax+b)有极值点x1,x2(x1<x2),且f(x1)=x1,则关于x的方程f2(x)+(2+a)f(x)+a+b=0的不同实根的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x∈R|y=lg(x-3)},B=$\{x∈R|y=ln(x-1)+\frac{1}{{\sqrt{4-x}}}\}$,则A∩B=(  )
A.B.(-2,1)C.(3,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知2m>2n,则m,n的大小关系为(  )
A.m>nB.m≥nC.m<nD.m≤n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.把下列函数写成分段函数,画出图象并求值域.
(1)y=|2x-1|;
(2)y=|x+1|+|x-2|;
(3)y=|x-1|+$\frac{|x|}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|-2<x<2},B={x|x<1},则A∪B=(  )
A.(-∞,2)B.(-∞,1)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=f(x)在定义域内可导,导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}\right.$(θ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为:ρsin(θ+$\frac{π}{4}}$)=1.直线l与曲线C相交于点A,B.
(1)求直线l的直角坐标方程;
(2)若直线l与y轴交于点P,求|PB|•|PA|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.集合A={x|x≤2,x∈R},B={y|y=x2,x∈R},则A∩B=(  )
A.{x|-2≤x≤2}B.{x|x≥2}C.{x|0≤x≤2}D.

查看答案和解析>>

同步练习册答案