精英家教网 > 高中数学 > 题目详情
14.若函数f(x)=ex(x2+ax+b)有极值点x1,x2(x1<x2),且f(x1)=x1,则关于x的方程f2(x)+(2+a)f(x)+a+b=0的不同实根的个数为3.

分析 求出f(x)的导数,问题转化为方程x2+(2+a)x+a+b=0有两个不相同的实数根,结合二次函数的性质判断即可.

解答 解:函数f(x)有两个不相同的极值点,
即f′(x)=ex[x2+(2+a)x+a+b]=0有两个不相同的实数根x1,x2
也就是方程x2+(2+a)x+a+b=0有两个不相同的实数根,
所以△=(2+a)2-4(a+b)>0;
由于方程f2(x)+(2+a)f(x)+a+b=0的判别式△′=△,
故此方程的两个解为f(x)=x1或f(x)=x2
由于函数y=f(x)的图象和直线y=x1的交点个数即为方程f(x)=x1的解的个数,
函数y=f(x)的图象和直线y=x2的交点个数即为方程f(x)=x2的解的个数.
根据函数的单调性以及f(x1)=x1
可知y=f(x)的图象和直线y=x1的交点个数为2,
y=f(x)的图象和直线y=x2的交点个数为1.
所以f(x)=x1或f(x)=x2共有三个不同的实数根,
即关于x的方程f2(x)+(2+a)f(x)+a+b=0的不同实根个数为3,
故答案为:3.

点评 本题难度中等偏上,是导数单调性、极值点与解一元 二次方程的综合题目,求解的关键是判断出函数的单调性,并将方程解的个数问题转化为函数图象的交点个数问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如表统计资料:
x23456
y2.23.85.56.57.0
若由资料知,y对x呈线性相关关系,试求:
(Ⅰ)请画出表数据的散点图;
(Ⅱ)请根据表提供的数据,求出y关于x的线性回归方程$y=\widehatbx+\widehata$;
(Ⅲ)计算出第2年和第6年的残差.(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)满足f(x+$\frac{3}{4}$)=f(x-$\frac{3}{4}$),当x∈[$\frac{1}{2}$,2]时,f(x)=|log2x|,则方程f(x)=logπx在[$\frac{1}{2}$,5]的实根个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某高中数学老师从一张测试卷的12道选择题、4道填空题、6道解答题中任取3道题作分析,则在取到选择题时解答题也取到的概率为(  )
A.$\frac{{C_{12}^1•C_6^1•C_{20}^1}}{{C_{22}^3-C_{10}^3}}$
B.$\frac{{C_{12}^1•C_6^1•C_4^1+C_{12}^1•C_6^2}}{{C_{22}^3-C_{10}^3}}$
C.$\frac{{C_{12}^1•(C_6^1•C_4^1+C_6^2)+C_{12}^2•C_6^1}}{{C_{22}^3-C_{10}^3}}$
D.$\frac{{C_{22}^3-C_{10}^3-C_{16}^3}}{{C_{22}^3-C_{10}^3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知在直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2CD=2AD=2,P是以C为圆心,且与BD相切的圆上的动点,设$\overrightarrow{AP}=λ\overrightarrow{AD}+μ\overrightarrow{AB}$(λ,μ∈R),则λ+μ最大值为(  )
A.-1B.2C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),则a+c的最小值是(  )
A.2B.4$\sqrt{2}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.国内某大学有男生6000人,女生4000人,该校想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取100人,调查他们平均每天运动的时间(单位:小时),统计表明该校学生平均每天运动的时间范围是[0,3],若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.根据调查的数据按性别与“是否为‘运动达人’”进行统计,得到如下2×2列联表:
运动时间
性别
运动达人非运动达人合计
男生36
女生26
合计100
(1)请根据题目信息,将2×2列联表中的数据补充完整,并通过计算判断能否在犯错误概率不超过0.025的前提下认为性别与“是否为‘运动达人’”有关;
(2)将此样本的频率估计为总体的概率,随机调查该校的3名男生,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望E(X)及方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a=0.80.8,b=0.81.2,c=1.20.8则(  )
A.c>a>bB.c>b>aC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足$\left\{\begin{array}{l}{x-y≤1}\\{2x+y≤5}\\{x≥1}\end{array}\right.$,则函数z=x+3y的最大值为(  )
A.10B.8C.5D.1

查看答案和解析>>

同步练习册答案