精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+2,若f(x)的导函数f′(x)的图象关于直线x=1对称.
(Ⅰ)求导函数f′(x)及实数a的值;
(Ⅱ)求函数y=f(x)在区间[-1,2]上的最大值和最小值.
分析:(Ⅰ)求出f′(x),由其图象关于x=1对称即可求出a值,从而得到f′(x).
(Ⅱ)借助(Ⅰ)问,求出f(x)在区间[-1,2]上的极值、端点处函数值,其中最大者为最大值,最小者为最小值.
解答:解:(Ⅰ)f′(x)=3x2+2ax,
因为f′(x)的图象关于直线x=1对称,所以-
1
3
a=1,a=-3,从而f′(x)=3x2-6x.
故f′(x)=3x2-6x,a=-3.
(Ⅱ)由(Ⅰ)知:f(x)=x3-3x2+2,f′(x)=3x(x-2),
则当x∈[-1,0)时,f′(x)>0,f(x)单调递增;当x∈(0,2)时,f′(x)<0,f(x)单调递减.
∴f(0)=2为极大值,又f(-1)=-2,f(2)=-2.
所以y=f(x)在区间[-1,2]上的最大值为2,最小值为-2.
点评:本题考查应用导数求函数在闭区间上的最值问题,以及分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案