精英家教网 > 高中数学 > 题目详情
14.已知二次函数f(x)=x2+ax+b,且方程f(x)=17有两个实根-2,4
(1)求函数y=f(x)的解析式;
(2)若关于x的不等式f(x)≤λx在区间[2,4]上恒成立,试求实数的取值范围.

分析 (1)由题意可得-2,4是x2+ax+b-17=0的两根,运用韦达定理,可得a,b,进而得到f(x)的解析式;
(2)运用参数分离可得λ≥x+$\frac{9}{x}$-2在[2,4]的最大值,由对勾函数的单调性,求得最大值,即可得到所求实数的范围.

解答 解:(1)方程f(x)=17有两个实根-2,4,
即为-2,4是x2+ax+b-17=0的两根,
可得-2+4=-a,-2×4=b-17,
解得a=-2,b=9,
则f(x)=x2-2x+9;
(2)若关于x的不等式f(x)≤λx在区间[2,4]上恒成立,
即为λ≥$\frac{{x}^{2}-2x+9}{x}$=x+$\frac{9}{x}$-2在[2,4]的最大值,
由y=x+$\frac{9}{x}$-2在[2,3]递减,在[3,4]递增,
可得ymin=3+3-2=4,x=2时,y=$\frac{9}{2}$;x=4时,y=$\frac{17}{4}$.
即有y的最大值为$\frac{9}{2}$.
则λ的取值范围是[$\frac{9}{2}$,+∞).

点评 本题考查二次函数的解析式的求法,注意运用韦达定理,考查不等式恒成立问题的解法,注意运用参数分离和函数的单调性解决,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.根据下列条件求值:
(1)在等差数列{an}中,a1=2,S3=12,求a6
(2)在等比数列{an}中,a5=4,a7=16,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个扇形的所在的圆的半径为5,该扇形的弧长为5
(1)求该扇形的面积              
(2)求该扇形中心角的弧度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数φ(x)=ex-1-ax,
( I)当a=1时,求函数φ(x)的最小值;
(Ⅱ)若函数φ(x)在(0,+∞)上有零点,求实数a的范围;
( III)证明不等式ex≥1+x+$\frac{1}{6}{x^3}({x∈R})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.编号为1,2,3的三位学生随意入坐编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是ξ.
(1)求随机变量ξ的概率分布;
(2)求随机变量ξ的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.终边在直线y=-x上角的集合可以表示为{α|α=-$\frac{π}{4}$+kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.寒假期间,为了让同学们有国际视野,我校组织了部分同学到美国游学.已知李老师所带的队有3名男同学A、B、C和3名女同学X,Y,Z构成,其班级情况如表:
甲班乙班丙班
男同学ABC
女同学XYZ
现从这6名同学中随机选出2人做回访(每人被选到的可能性相同)
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在∠BAC=θ,中,角A、B、C的对边分别是a,b,c已知$b=2,c=2\sqrt{2}$,且$C=\frac{π}{4}$,则△ABC的面积为$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知logax>logay(0<a<1),则下列不等式成立的是(  )
A.3x-y<1B.lnx>lnyC.sin x>sin yD.x3>y3

查看答案和解析>>

同步练习册答案