精英家教网 > 高中数学 > 题目详情
12.如图,在直三棱柱ABC-A1B1C1中,D是BC上的一点,AB=AC,且AD⊥BC
(1)求证;A1C∥平面AB1D1
(2)若AB=BC=AA1=2,求点A1到平面AB1D的距离.

分析 (1)连接A1B交AB1于E,连接DE,根据中位线定理即可得出DE∥A1C,故而A1C∥平面AB1D1
(2)过B作BF⊥B1D,则可证BF⊥平面AB1D,于是点A1到平面AB1D的距离等于C到平面AB1D的距离,等于B到平面AB1D的距离BF.

解答 证明:(1)连接A1B交AB1于E,连接DE,
∵四边形ABB1A1是平行四边形,
∴E是AB1的中点,
∵AB=AC,AD⊥BC,
∴D是BC的中点,
∴DE∥A1C,
又DE?平面AB1D,A1C?平面AB1D,
∴A1C∥平面AB1D1
(2)∵A1C∥平面AB1D1
∴A1到平面AB1D的距离等于C到平面AB1D的距离,
∵D是BC的中点,
∴C到平面AB1D的距离等于B到平面AB1D的距离,
过B作BF⊥B1D于F,
∵BB1⊥平面ABC,AD?平面ABC,
∴AD⊥BB1
又∵AD⊥BC,BB1∩BC=B,
∴AD⊥平面BCC1B1
∴AD⊥BF,又B1D∩AD=D,
∴BF⊥平面AB1D,即BF为B到平面AB1D的距离,
∵BD=1,BB1=2,∴B1D=$\sqrt{5}$,
∴BF=$\frac{BD•B{B}_{1}}{{B}_{1}D}$=$\frac{2\sqrt{5}}{5}$.
∴A1到平面AB1D的距离为$\frac{2\sqrt{5}}{5}$.

点评 本题考查了线面平行的判定,线面距离的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}+tcos\frac{π}{4}\\ y=tsin\frac{π}{4}\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为$\frac{{{ρ^2}{{cos}^2}θ}}{4}+{ρ^2}{sin^2}θ=1$.
(1)求曲线C的直角坐标方程; 
(2)求直线l与曲线C相交弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,其中俯视图是半圆里面内切一个小圆,若该几何体的表面积为16+16π,则正视图中的a值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过38,则该塔形中正方体的个数至少是(  )
A.4个B.5个C.6个D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在区间($\frac{1}{2}$,3)上单调递减,则实数a的取值范围是[$\frac{10}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某工厂有甲、乙两生产车间,其污水瞬时排放量y(单位:m3/h )关于时间t(单位:h)的关系均近似地满足函数y=Asin(ωt+φ)+b(A>0,ω>0,0<φ<π),其图象如下:
(Ⅰ)根据图象求函数解析式;
(II)由于受工厂污水处理能力的影响,环保部门要求该厂两车间任意时刻的污水排放量之和不超过5m3/h,若甲车间先投产,为满足环保要求,乙车间比甲车间至少需推迟多少小时投产?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知一个五次多项式为f(x)=5x5-4x4-3x3+2x2+x+1,利用秦九韶算法计算f(2)的值时,可把多项式改写成
f(x)=((((5x-4)x-3)x+2)x+l)x+l,按照从内到外的顺序,依次计算:v0=5,v1=5×2-4=6,v2=6×2-3=9,v3=9×2+2=20,则v4的值为(  )
A.40B.41C.82D.83

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\sqrt{1-x}$+lg(x+2)的定义域为(  )
A.(-2,1)B.[-2,1]C.(-2,+∞)D.(-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知复数z=$\frac{4{a}^{2}-3a-1}{a+3}$+(a2+2a-3)i(a∈R).
(I)若z=$\overline{z}$,求a;
(Ⅱ)a取什么值时.z是纯虚数?

查看答案和解析>>

同步练习册答案