精英家教网 > 高中数学 > 题目详情

函数f(x)是定义在R上的奇函数,且数学公式,则f(1)+f(2)+…+f(2009)=________.

解:∵
∴f(-x)=f(1+x),
又函数f(x)是定义在R上的奇函数
∴-f(x)=f(-x),且f(x)=f(x+2)
∴f(-1)=f(1)=-1,∴f(-1)+f(0)+f(1)=0.
又 2009=669×3+2,故 f(1)+f(2)+f(3)+…+f (2009 )
=669×0+f(1)+f(2)=f(1)+f(-1)=0,
故答案为0.
分析:根据题意可推出f(1-x)=f(-x)且f(-x)=-f(x),得到f(x)是周期为2的函数,且f(-1)+f(0)+f(1)=0,故可得 f(1)+f(2)+f(3)+…+f (2009 )=669×0+f(1)+f(2)=f(1)+f(-1).
点评:本题考查函数的对称性、周期性,及函数值,推出f(x)=f(x+2)且f(-x)=f(-x),是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,其最小正周期为3,且x∈(-
3
2
,0)时
,f(x)=log2(-3x+1),则f(2011)=(  )
A、-2
B、2
C、4
D、log27

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在N*的函数,且满足f(f(k))=3k,f(1)=2,设an=f(3n-1),b1=1,bn-log3f(an)=b1-log3f(a1).
(I)求bn的表达式;
(II)求证:
b1
f(a1)
+
b2
f(a2) 
+…+
bn
f(an)
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)是定义在[-1,1]上的增函数,且f(x-1)+f(1-2x)<0,则实数x的取值范围为
(0,1]
(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•临沂二模)已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈[-e,0)时,f(x)=ax-ln(-x),(a<0,a∈R)
(I)求f(x)的解析式;
(Ⅱ)是否存在实数a,使得当x∈(0,e]时f(x)的最大值是-3,如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

注:此题选A题考生做①②小题,选B题考生做①③小题.
已知函数f(x)是定义在R上的奇函数,且当x≥0时有f(x)=
4xx+4

①求f(x)的解析式;
②(选A题考生做)求f(x)的值域;
③(选B题考生做)若f(2m+1)+f(m2-2m-4)>0,求m的取值范围.

查看答案和解析>>

同步练习册答案