精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆的左、右焦点分别为,以线段为直径的圆与椭圆交于点.

1)求椭圆的方程;

2)过轴正半轴上一点作斜率为的直线.

①若与圆和椭圆都相切,求实数的值;

②直线轴左侧交圆于两点,与椭圆交于点(从上到下依次为),且,求实数的最大值.

【答案】(1)(2)①的最大值为3

【解析】

1)线段为直径的圆与椭圆交于点,可以得圆的方程及,将点代入椭圆方程得,又因为,就可解出,进而得出椭圆方程.

2)①设直线 的方程为:,即,因为与圆和椭圆相切,得,△,解得,

②取中点,连接,则,又,所以点中点,写出点坐标,进而得坐标,代入椭圆方程化简得,,设,最后再求则 最值.

解:(1)设椭圆的焦距为

因为线段为直径的圆与椭圆交于点

所以

又点在椭圆上

所以,解得

所以椭圆的方程为

2)①因为直线与圆相切,所以,即

,消去

因为直线与椭圆相切,

所以

联立(i)()得负值舍去

②取中点,连结,则

,所以中点

,解得

所以

代入椭圆方程化简得

,当时,取最大值3,此时.

时,

符合题意,故的最大值为3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数在区间上的最大值为9,最小值为1,记

1)求实数的值;

2)若不等式成立,求实数的取值范围;

3)定义在上的函数,设将区间任意划分成个小区间,如果存在一个常数,使得和式恒成立,则称函数为在上的有界变差函数.试判断函数是否为在上的有界变差函数?若是,求的最小值;若不是,请说明理由(表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合,集合函数至多有一个零点,则的元素之和的函数关系式_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】fx)是定义域为R的偶函数,且fx+3)=fx-1),若当x∈[-2,0]时,fx)=2-x,记c=f(32),则abc的大小关系为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,把长为6,宽为3的矩形折成正三棱柱,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱的交点记为E,F.

(1)求三棱柱的体积;

(2)求三棱柱中异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C的左、右顶点为AB,右焦点为F.过点A且斜率为k)的直线交椭圆C于另一点P.

1)求椭圆C的离心率;

2)若,求的值;

3)设直线l:,延长AP交直线l于点Q,线段BQ的中点为E,求证:点B关于直线EF的对称点在直线PF上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个玩具盘由一个直径为2米的半圆O和一个矩形ABCD构成,米,如图所示.小球从A点出发以5 V的速度沿半圆O轨道滚到某点E处后,经弹射器以6 V的速度沿与点E切线垂直的方向弹射到落袋区BC内,落点记为F.设弧度,小球从AF所需时间为T

1)试将T表示为的函数,并写出定义域;

2)当满足什么条件时,时间T最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是( )

A. 月跑步平均里程的中位数为6月份对应的里程数

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,若,则称是“紧密数列”.

1)若数列是“紧密数列”,且,求的取值范围;

2)若为等差数列,首项,公差,且,判断是否为“紧密数列”,并说明理由;

3)设数列是公比为的等比数列,若数列都是“紧密数列”,求的取值范围.

查看答案和解析>>

同步练习册答案